=1

)

Pl

.‘. ;.
m
2

; +
!
i .. ,
; ,
Ed
.
t W
g
t
! a4
1 f-
T <,
S
o B
o’ '
l‘* ¥ b, D A
et
RS .
r . 4 ;

cL e i,—:i.N.;

. SQL/NF TRANSLATOR !
o FOR THE
THUTON NESTED RELATIONAL DATABASE SYSTEM
THESIS .
Crag, William Sehinpd ;

Captan, USAL

0Q AFTT/GOE/ENG /20100

~ V.

Y

anht Puturson Air

s : §

ok e

f

AFIT/GCE/ENG/90D-05

SQL/Nk TRANSLATOR
FOR THE
TRITON NESTED RELATIONAL DATABASE SYSTEM

THESIS

Craig William Schnepf
Captain, USAT

AFIT/GCE/ENG/90D-05

) .
P T
s * v

Approved for public release; distribution unlimited

AFIT/GCE/ENG/90D-05

SQL/NF TRANSLATOR

FOR THE

TRITON NESTED RELATIONAL DATABASE SYSTEM

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technnlogy
Air University
In Partial Fulfillment of the

Requirements for the Degree of

Accession For \

Master of Science (Computer Engineering)

NTIS GRA&I %
DTIC TAB

Unannounced O
Justification

Craig William Schnepf, A.A.S, B.S.E.E.

By.
Distribution/

Captain, USAT

Availability Codes

December, 1990

Approved for public release; distribution unlimited

Avail and/or
Dist Special

A-l

<s

Acknowledgments

I am very grateful to all the people who helped and supported me throughout the thesis
project. First, my advisor, Major Mark Roth, whose advice and guidance was the keystone to my
understanding and implementing the thesis project. I also want to thank my instructors at ATFIT
for providing me with the background in software engineering that was necessary to cenplete a task
of this size and complexity. . especially want to thank my wonderful wife Kathy whose paticuce
and understanding made it , »ssible for me to work the many long hours and to remind me of the

other things important to life.

Craig William Schnepf

Table of Contents

Page

Acknowledgments L L e e e e e ii
Tableof Contents o v i vt it i e e e e e e e e e il
Listof Figures o0 i i e e e vii
AbStract . . . L e e ix
1. Introduction e e e e 1-1
11 Background e s 1-2

1.2 Natureofthe Problem 1-2

1.3 Scope . . e e e e e e e e e e e e 1-3

1.4 Approach/Methodology 1-4

1.5 Organization 1-4

I1. Summary of Current Knowledge 2-1
2.1 Introduction i e 2-1

2.2 The Nested Relational Database Model 2-1

2.2.1 First Normal Formvs NRM. 2-1

2.2.2 Operators for Single Attribute Nested Relations 2-3

2.2.3 Operators for Multi-Attribute, Multi-Level Nested Relations. 2-41

2.3 Nested Relational Algebras 2-6

2.3.1 Thomasand Fischer. 2-6

2.3.2 A Recursive Algebra for Nested Relations. 2-6

2.3.3 SchekandSchoil.. 2-7

- 2.3.4 Deshpande and Larson. 2-7

2.4 SomeRelated Work o e 2-7

P
. Page
25 EXODUS e e e e 2-8
251 Parser..o e e 2-9
2.5.2 Catalogmanager.. o e 2-10
IIT. Colby Algebra & SQL/NF i i i 3-1
31 Colby Algebra e 3-1
3.1.1 Definitions for the Nested Relational Model.. 31
3.1.2 The Nested Relational Recursive Algebra. 3-3
3.2 SQL/NT e e e e 315
3.2.1 Imtroduction. i i e e 3-15
3.2.2 SQL/NF Query Facilities.o v, 3-15
3.2.3 Data Definition Language(DDL). 3-28
3.2.4 Data Manipulation Language (DML). 3-31
IV. Design & Implementation 4-1
4.1 Imtroduction e 4-1
4.2 Parser e e 4-1
42,1 The LEX process. v v v v v v vt vt i it e v 4-2
4.2.2 The YACCoprocess.o oo vt ii i i 4-2
423 ParserInput., 4-3
43 CatalogManager o v v v v i e 4-4
4.4 SQL/NF Query Tree . . . v v v v v vt e it e e et e n e e e e e 4-10
4.5 Colby Algebra Query Tree process oo v v v v v v v v v 4-15
4.5.1 SQL/NT to Colby Algebra translation.. 4-18
4.5.2 NEST and UNNEST Process, 4-22
4.6 Extensions to the Colby Query Thee oo oot o 4-23
4.7 Testing and Validation. 4-25
4.7.1 Translator limitations. 4-27

v
- Page
V. Conclusionot i i it i e e e e e e e e 5-1
5.1 Summary . ..o ..t e e e e e e e e e e 5-1
5.2 Future Recommendations 5-2
Appendix A. YACCand LEX formats, A-1
Al YACC . . e A-1
A2 LEX o o e A-2
Appendix B. Colby Algebra Definitions i, B-1
Bl QueryFormats B-1
B2 Selection (6). . . .o .o B-1
B.3 Projection (7). . . o v v vt B-2
B4 Nest (¥). . . oot e B-3
B.S Unnest (). . o v v v oo e B-3
B6 JoinPath.. e B-4
B.7 Cartesian-Product (x). B-5
B8 Join (Bd). + hv v e B-5
B.9 Extended Binary Operators.0.0... B-6
B.9.1 Unmon (U,U%). . o .ot e B-6
B.9.2 Difference (=, =%). + . v v v o i B-6
B.9.3 Intersection (N,N€). B-7
Appendix C. SQL/NF BNEF e e e e e C-1
C.l Queryfacilities i e e C-1
C2 DML. . .. i e e e e C-3
C.3 DDL C-4

R Page
Appendix D. SQL/NF test cases . . o v v v v vttt it e e e D-1

D.1 DataDictionary i i ittt i e e e -1

D2 SFW-eXPIessions « v v v v v v v v et it et e et e e e D-3

D3 NESTand UNNEST ittt i it D-11

Bibliography v i i i e e s e e e e BIB-1

0¥ VITA-1

vi

List of Figures

Figure Page
2.1, INF DatabaseTable. v v ittt et e 2-2
2.2, NF?Database Table v it it ittt it e e e i e 2-2
2.3. INF Database Headers0 v vt i it i it i e i e e 2-5
2.4. Nested Database Tableheader 2-6
2.5, EXODUS architecture o v v 2-9
3.1. Nested Database Table 3-4
3.2, SELECToperatorresults, 3-5
3.3. PROJECToperatorresults i it e it i it v e v 3-6
3.4. INF Database Table header, 3-7
3.5. NESToperatorresults. oo vttt it et i e e i e 3-8
3.6, Nested Databaserelation 39
3.7. Nested Databaserelation i 39
3.8. Result from Cartesian-Product 3-10
3.9. Nested Database Relation, 3-11
3.10. Result from Joinoperator v . v v v it i e e e 3-11
3.11. Nested Database Relation 3-12
3.12, Result from Unionoperation 3-13
3.13. Result from Difference operation v v v v v v v v i 3-14
3.14. Result from Intersection operator 3-14
3.15. EMPLOYEE and COMP Relations 3-16
3.16. Three Sample INF Relations 3-26
3.17. Result from STORE command 3-32
4.1. Query Tree Process . . . v v v v v i i it e e e e e e e e e 4-1
4.2, SQL/NFsample BNF it i e 4-2

vii

Figure
4.3. YACC format for SQL/NF sample BNF
4.4, The Table and ITEM data structures v
4.5, Sample CREATE TABLEcommand i it i v nn ...
46, CREATETABLE Tree o v i ittt et e i e i e in e e a s
4.7. Sample Relation Table
48. COMP Symbol Table i i i it i i v
4.9. Sample Symbol Table with nested Schemes
4.10. The SQL.QUERY node structure v v v v it vt oo e o v n v
4.11. The SELECT_NODE structure o v v v vt vt v e e e n v s e s s
4.12. The FROM.NODE sfructure v i i i it i e e i v e e s
4.13. The WHERE.NODE struture it i e o
4.14.SQL/NF Query Tree ot v it e e e e
4.15.SQL/NF nested Query Tree v ittt it e
4.16. The COL.SPEC_NODE structure i v
4.17. The QUERY node structure v o i i it it v it e i v
4.18. The ARGUMENT structure v i ittt it e e
4.19. The LIST node structure v i it ittt oo,
4.20. The ATTRDESC structure oo v vttt e e
4.21. The PRED_NODE structure i,
4.22.Sample Colby Query Tree ot i i i e
4.23. Nested SFW-expression in Query Tree
4.24. The NEST.TABLE.NODE structure
4.25.COMP relation table e
4.26. NEST operator Query Tree i i it i e e e
4.27. The EMP relation table

4.28. STORE.VALUE QUERY Tree o v v vt i e i e i e e e

Al Example YACCrule v ittt it e

4-14
4-15
4-15
4-16
4-16
4-17
4-17
4-20
4-21
4-22
4-23
4-24
4-25

4-26

Ko Sl Ay E e

LY

ATIT/GCE/ENG/90D-05

Abstract]

The problem addressed in this thesis concerns the design and linplemieutation of a high level
data base query language translator based on the nested relational data model. The objective of the
model is to increase the performance of the rel:.tional medel by modeling real-world objects in the
problem domain into nested relations. The translator is designed within the EXODUS extensible
architectural framework for building application-specific database systems. The SQL/NT query
language used for the nested relational model is an extension of the popular relational model query
language SQL. The query language is translated into a nested relational algebra (Colby algebra)
in the form of a-query tree structure. A large amount of theory exists for tlic nested relational
model, however, very little information on the implemeutation of a high level query language for
the model is available. This thesis effort provided the front end to a proto-type nested relational

data base management system (Triton) using the EXODUS tool kit.

In Triton, EXODUS is used to implement the first stages of the data base management
system. These stages include the parser and the catalog manager. Since the EXODUS tool kit
does not provide a parser development tool, we chose to use the popular UNIX tools “LEX” and
“YACC” to parse the SQL/NT query statements and execute the C programs necessary for creating
and maintaining a data dictionary, generating a SQL/NT query tree, and translating the SQL/NF

query tree into a Colby algebra query tree. The Colby algebra tree is available for the next stage

of the EXODUS architecture, the query optimizer. ﬁ Y,)
F) ¢ —

el i

2B L T L) 0 o

S 0ol g 81

S g

14 el L

Sl e 5 B bt

B P 8 e LS B L Ll S

LI sl A

W, . AN, RS 4R 48

bt kil

ML M K a4

[T

SQL/NIF TRANSLATOR
FOR THE

TRITON NESTED RELATIONAL DATABASE SYSTEM

I. Introduction

The storage and retrieval of information by computers plays an increasingly important role
in our daily lives. Banking transections, inventory management, personnel rccord keeping, and
payroll processing are only a few of the many traditional applications which require the cfficient
.nanipulation of large amounts of data. The manipulation of these large amounts of data js ac-
complished through the use of some type of database management system (DBMS) The desire to
utilize database systems for what are commonly known as non-traditional applications is ou the
rise. Some of these non-traditional applications include computer-aided design (CAD), computer-
aided manufacturing (CAM), computer-aided engineering (CAE), and audio/video data. In this
thesis we address a database model which can meet the requirements-of thesc applications along

with a query language to manipulate the database.

The purpose of this thesis project is to desigh and implement a translator for SQL/NF that
will parse a subset of SQL/NT query statements and produce a QUERY tree structure that will be
compatible with the recursive algebra for nestcd relations developed by Latha S. Colby (4). This
algebra for nested relations {Colby Algebra) was chosen as the nested algebra for the translator
because it allows tuples at all levels of nesting in a nested relation to be accessed and modified
without any special navigational operators and without having to flatten the nested relation. The
SQL/NF translator will be the “front end” to the Triton nested relational database management

system, using the EX<C 'S tool kit.

1-1

I *

1.1 Background

The relational database model, introduced by Codd (3), is the most prevalent design used
in commercial database systems today. The relational model is best described as a collection of
relations, which are represented by tables with common properties or attributes. The tables are
arranged so that the columns contain the attributes of the relation, and cach row in the table
contains an instance of the relation, which is known as a tuple. Operations are provided by the
database system to modify or retrieve information from the relations in the database. These
operations are based on relational algebra and calculus, and provide the foundation for on-going

work in relational database models.

The traditional relational model requires that all values in a relation be atomic in nature.
That is, each attribute of each tuple in the relation must be a single entity such as a number or

a character string. When a relation meets this requirement it is said to be in first-normal-form
(INF).

The theory of nested relational databases was motivated by the cbservation that quite often
in a relational-database system it is desirable to store a sef of values for an attribute rather tian
a single value. In a nested relation, attributes can be relation-valued as well as atomic-valued. A
relation which occurs as the value of an attribute in a tuple of another relation is said to be nested.

Therefore the nested relational model allows the database to represent comiplex informaticu 1n a

format that more closely resembles the real world.

1.2 Nature of the Problem

The nested relational database model is a relatively new concept that provides for the storage

of information in a database that does not fit the traditional relational database format.

“There is a growing interest in abandoning the first-normal-form assumption on which
the relational database model is based. This interest has developed from the desire
to extend the applicability of the relational model beyond traditional data-processing
applications.” (13:99)

The nested relational model extends the capability of the relational model for non-traditional
data to be stored in a DBMS. A formal implementation scheme is needed to further explore the

applications for and capabilities of nested relations.

SQL (Structured Query Language) is the relational database language pioneered in the IBM
System R project and subsequently adopted by IBM and others as the basis for numerous com-
mercial implementations and as the base for several extended research prototypes (see for example
(15)). SQL/NF, designed at the University of Texas at Austin (13), is an extension of SQL designed
to operate on nested relations. The primary objective in designing SQL/NF was to provide a lan-
guage that could be used to query nested relational databases. SQL/NT was designed to euhance
SQL’s capabilities by modifying all the SQL operators in order to operate on nested relations. In
addition to all the operators present in SQL, SQL/NT identifies two more - the “nest” and “unnest”
operators, which are necessary to convert flat relations (INT) to equivalent nested :clations and

vice versa.

SQL is the current industry standard for relational database systems, and SQL/NT extends
this standard so that it may also work with nested relations. Therefore a complete system which
extends the capabilities of SQL to operate on nested relations is the goal of a prolotype uested

relational database management system being developed at AFIT, known as Triton.

1.8 Scope

The

wn

QL/NF translator is able to parse all the SQL/NF clauscs as defined by the BNF in
Appendix C. Implementation of the query statements is limited to the clauscs required for the

creation and deletion of items in the data dictionary and the clauses that will directly traunslate

1-3

[

into the appropriate algebraic operations of: select, project, and cartesian-product. In addition it
will be able to parse the SQL/NTF operators of: nest and unnest. All these operations will be stored
in a “Query tree” structure that will represent the Colby algebra (4) translation of the input query.
This query tree will be in such a format to be easily used as the input to the query optimizer stage

of Triton using the EXODUS tool kit.

1.4 Approach/Methodology

The primary goal in this thesis effort has been to gain an extensive knowledge of nested
relational data base theory, in addition to the SQL/NF query language and use of the EXODUS
tool kit. The approach we took was to first design and implement a parser using the LEX and
YACC compiler tools of Unix, then design and implement the E code! for the catalog manager,
then design and implement the C code for an SQL/NF query tree structure, and finally design and
impleiment the C code that translates the SQL/NF query tree into a query tree structure for the

Colby algebra.

1.5 Organization

Chapter 2 begins with a background discussion of the nested relational database model,
followed by an overview of some of the nested relational algebra’s that have been proposed, and
some work closely related to this thesis. Then an overview of the EXODUS database system
project as related to this thesis effort is presented. Chapter 3 begins with an in depth discussion
of the nested relational algebra presented by Latha S. Colby (4) , followed by a description of the
SQL/NF query language presented in (13). Chapter 4 describes the design and implenientation
of the translator using the EXODUS tool kit. Finally, conclusions about this thesis effort are

presented, in Chapter 5, with recommendations for future work.

I A persistent programming language provided as part of the EXODUS tool kit. (See Section 2.5)

1-4

II. Summary of Current Knowledge

2.1 Iutroduction

We begin this chapter by giving a brief introduction to the concept of nested relations as
compared to standard relations (those that meet the criteria for “first normal form” or INT).
Next, we provide an overview of the development of the Nested Relational Database Model (also
known as “non-first normal form” or NF2). This we follow with a brief summary of some of the
algebra’s that have been developed for use in association with the Nested Relational Model (NRM).
Next, we provide an overview of some related work for an SQL/NF parser. Finally, we discuss the

EXODUS(2) extensible database system project.

2.2 The Nesled Relational Database Model

2.2.1 First Normal Form vs NRM. A relational database is normally described as a col-
lection of “tables” which correspond to instances of the various relations of the database (8). In
a given table the rows-correspond to tuples of the relation depicted, and the columns correspond
to attributes of the relation. The attributes which form a particular table, or relation, compose
the scheme of that relation. This scheme is usually thought of as the pattern which is followed
when particular attribute (and hence tuple) values are assigned. In addition, each attribute has
an associated domain from which individual values must be chosen. Thus an entry in the location

row;, column; represents the value of the ith tuple from the domain of the jth attribute.

The traditional relational model introduced by Codd (3) in 1970 requires that all values in
a relation be atomic. That is, each attribute of each tuple in the table must be a single entity
such as a number, or a character string. When this requirement is met the relation is said to be
in First Normal Form (1NF). Although this model is sufficient for representing objects that Lave
simple domains, complex objects cannot be represented ecasily. Normalization in thie relational

model causes a lot-of fragmentation in the representation of objects. Information about objects

2-1

and their relationships can be scattered over several different tables. This in turn causes queries
lo-the database to be slow and complicated since excessive joins have to be performed among the

various tables in the database (4).

The nested relational model, also known as Non-First Normal Form, is an extension of the
traditional relational model without the first normal form restrictions. Without this restriction the
attributes of a relation can have non-atomic values. This corresponds to allowing for unnormalized
rclations. Makinouchi (9) introduced this concept by suggesting that the INF assumption be
relaxed so that the attributes can be “set-valued”.

COMPANY

| dno | dname | loc | ename |

dnol | dnamel | locl | enamel
dno2 | dname2 | loc2 | ename2
dnol | dnamel | locl | ename3
dno2 | dname2 | loc2 | enamed

Figure 2.1. 1INF Database Table

In order to illustrate these concepts let us consider the simple example shown in Figure 2.1.

The example is a INF (flat) database scheme for some company. The database consists of a table

with atomic attributes of dept number (dno), dept name (dname), location (loc), and employee

names (ename). If we recognize that the relation contains a “set” of employee’s by dept number ,

tlien the values for the ename attribute can be nested in a more compact nested relation as shuwn

by the scheme in Figure 2.2. The relation COMPANY now consists of the alomic attributes dno,
dname, loc, and the complex atéribute emps,
COMPANY

| dno| dname| loc | emps |

dnol | dnamel ! locl | { enamel, ename3 }
dno2 | dname?2 | loc2 | { ename2, enamed }

Figure 2.2. NF? Database Table

2-2

2.2.2 Operators for Single Allribute Nested Relalions. The nested relational model can be
considered a superset of the traditional model, in as much as retaining the same operations. IHow-
ever, most research efforts have pointed out the need for determining how one might create un-
normalized (NRM) relations from normalized (1NT) relations, and what additional operations

should be defined for nested relations. These requirements were addressed in 1982 by Jaeschke and

Schek(7).

2.2.2.1 Nest and Unnest Operalors. The first requirement addressed by Jaeschke and
Schek was the definition of the “nest” operator, which transfers a flat relation into a nested relation.
This nest operator works by examining the value of a particular attribute within all tuples of the
relation and partitioning the tuples along the remaining attributes (8). That is, it forms a single
tuple with a new attribute name in place of the set of values in the tuples being grouped together.
Using the previous company database example, the nest operator will transform the INT table in
‘Figure 2.1 into the nested relational table of Figure 2.2. This would be done by applying the nest
operator to the “ename” attribute in Figure 2.1, compressing the associated values of the attribute

into the company table of Figure 2.2, producing a new complex attribute of “emps”.

It is important to note that this definition of the Nest operator only allows nesting on a singl>
attribute at a time. This definition also does not cover the nesting of attributes within already

set-valued attributes.

The second requirement addressed by Jaeschke and Schek was the definition of the “unnest”
operator, which performs the inverse of the nest operator. That is, unnest will flatten out the
relation created by the nest operator back into a INT relation. This unnesting is performed by
combining each element of a nested attribute with repeated occurrences of the associated partition
of unnested attributes (8). Again, using the previous company database exatpic, tlie unuest
operator would transform the nested relational table of Figure 2.2 into the flat relational table of

Figure 2.1. This would be done by applying the unnest operator to the “emps” attribute, thus

2-3

expanding the table to its original 1NF form.

2.2.2.2 Relational Algebra Operalors. Jaeschke and Schek also briefly addressed the
possibility of applying the normal relational algebra operators to the nested relations. They said
that “union, difference, projection. and the cartesian product can be defined for all relations, so
they also apply on [nested] relations.” Therefore, allowing the comparison of set-valued attributes

via the set comparison symbols (C, D, C, D, =) also “extends” selection to nested relations (8).

The last item Jaeschke and Schek defines are two methods of performing a natural join of
nested relations. The first method can be considered an “extension” of the “normal” natural join
(8). The second method is called the “intersection join”. These methods will be further explained

in Chapter 3, as they are defined for the nested relational model used by-the Colby Algebra.

2.2.3 Operators for Mulli-Attribute, Mulli-Level Nested Relations. Expansion of the work
done by Jaeschke and Schek to allow for multiple attribute nesting and multiple levels was accom-
plished by the efforts of Fischer and Thomas (17). They extended the definitions of the relational
algebra operators in view of increasing the scope for nested relations. This included providing
results concerning properties associated with the interaction of nest, unnest, and the rclational

algebra operators.

The nest operator of the extended definition allows each element of a set associated with a
given partition to in turn be a set of attributes instead of merely a single attribute. This allows for
nesting of more than one attribute at a time and for multiple levels of nesting. These unnorinalized
relations permit components of tuples to now also have relations as attributes, forming subrelations
of the relation. The nested relational model allows users to view the-database in a way that more
closely represents a real world concept of complex objects. The associated relations can now be
represented as a whole entity in a single nested relation instead of being distributed over several

different flat relations.

2-4

The unnest operator of the extended definition repeatedly combines ecach element of a nested
attribute with its associated partition of remaining attributes so as to “flatten” thc overall structure
back to its INF form (8). These developments will be incorporated in the discussion of the definition

for the nested relational model as it is used with the Colby Algebra in the next section.

Now we have seen that although nested relations can consist of relations and atomic attributes,
the basic relational structure is still the primary building block. However, the nested relational data
model, to form its very structure, must provide a means to construct nested relations in addition
to using the basic relational operators (10). Before proceeding to discuss these operators further,

an example is in order.

DEPT

[dno| dname | loc |

I I L
EMP

| eno| ename | dno| sal |

I I I ||
CHILDREN

| eno | cname| dob |

I I | |

Figure 2.3. INF Database Headers

A nested relational structure can be created from the three flat relations in Figure 2.3 to form
the NRM relational structure of Figure 2.4. The EMP relation can be inserted in the DEPT relation
as a relation-valued attribute by their common attribute of dno, and the CHILDREN rclation can
be inserted in the EMP relation as a relation-valued attribute by their common attribute of crio.
These now form the new NRM relation of COMPANY with a relation-valued attribute of Emp and
atomic attributes of dno, dname, and loc. The subrelation Emp has a relation-valued attribute of
-Children and atomic attributes of eno, ename, and sal. Finally, the subrelation Children has only

alomic valued attributes of cname and dob. In this case, two levels of nesting have occurred within

2-5

the COMPANY relation.

COMPANY
dno | dname | loc Emp

eno | ename | sal | Children
cname | dob

l I || I L]

Figure 2.4. Nested Database Table header

2.8 Nested Relational Algebras

The following sections provide a summary of some of the work currently going on in the realm

of algebras for the nested relational model and a version of a translator for SQL/NF.

2.8.1 Thomas and Fischer. The algebra introduced by Thomas and Fischer (17) is simply
an extension of the operators for the relational model. The definitions for the relational model
operators also apply for this algebra. Thomas and Fischer added the additional operators-of “nest”
and “unnest” t. manipulate the structure of the data being stored. Ilowever, in order for any
other operation to be performed, such as “select” or “project”, the subrelation must be unnested
first. Then the normal operations are applied to the result. The unnesting is required because the
operators can only act upon the attributes at the top most level in a relation. Once an operation-is
complete, the results may have to be transformed back to the original form using the nest operator.
Therefore, this algebra merely stores the data according to the nested relational model, but any

manipulation of the data is done at the 1NT level.

2.3.2 A Recursive Algebra for Nested Relations. The algebra introduced by Colby (4) allows
subrelations at any level within a relation to be accessed and mauipulated without the need fu
a “nest” or “unnest” operation. In this algebra, the traditional relational opcrators are extended

with recursive definitions so that they can be applied not only to relatious Lut alsu tu subiclations

246

of the relation. The subrelations are accessed using a “recursive” list of attributes that identify the
path over which the extended relational operator(s) will perform their operations. The list is called
recursive because a single element of the list can be made up of another list of atiributes and so
on. The main advantage of this method is that operations can be done without restructuring the

relation in order to extract data that has been nested at different levels within the relation.

2.8.3 Schek and Scholl. The algebra introduced by Schek and Scholl (14) allows subrelations
al any level within a relation to be accessed without having to perform a nest or unnest operatiot.
A special operator is identified as a “navigator” to access the nested subrelations. The navigator
Schek and Scholl chose to use is the projection operator (7). This navigator requires that a query
performed on a subrelation is accomplished by a series of projects unti! the subrelation is rcached,
followed by the desired operation. In addition to this sometimes awkward requirement, renaming

the results of the projections is necessary in a number of situations.

2.3.4 Deshpande and Larson. The algebra proposed by Deshpande and Larson (5) allows
subrelations at any level within a relation to be accessed without having to perforin @ nest or winest
operation. Like Schek and Scholl (14), Deshpande and Larson chose to use a “navigator” type
operator metiiod to access the nested subrelations. The navigation is performed via an extended
selection operator and a subrelation constructor. Their definition for the selection operator provides
the ability to access any nested subrelation. This access is done using the subrelation constructor
which creates new subrelations while traversing the lower levels in the relation. Oue added difficulty
with this method is that it requires introducing new relations, and subsequently thie need for thic

user to provide a name for this new relation in order for the selection operator to function properly.

2.] Some Related Work

The SQL/NT translator designed by Ramakrishnan (11) translates SQL/NT queries extended

with “role joins” to a nested relational algebra in three stagss which are termed:

2-7

1. query transformation.
2. pre-processing.

3. meaning evaluation.

The first stage transforms the SQL/NF query statements into an intermediate form using the UNIX
tools LEX and YACC. The second stage further reduce the intermediate form generated in the first
stage using set-theoretic transformations. The final stage transforms the reduced intermediate
form into a nested relational algebra. This algebra is similar to the traditional relational algebra
introduced by Codd (3) except that a relation valued attribute may occur in any place an atomic
valued attribute can occur. In addition another operator is defined called “flunctional evaluatiou”,

this evaluator provides for operations on nested expressions.

The result of the implementation of Ramakrishnan’s translator is in the form of what is known
as a “Query Tree.” This query tree is a data structure representation of the algebraic translation
of the SQL/NF query. One drawback of this translator is that additional software is required to
produce the desired results of the original SQL/NF query. This additional software must accept
the query tree data structure as input and perform the designated algebraic operations in the query

free.

2.5 EXODUS

EXODUS (2) is an ~xtensible database system pioject that is addressing data management
problems posed by a variety of challenging new applications. The EXODUS project is being devel-
oped at the University of Wisconsin The goal of the project is to facilitate the fast development
of high-performance, application-specific dutabase systems. EXODUS provides an architectural
framework (see Figure 2.5) for building application-specific database systems. This architecture
provides powerful tools to help automate the generation of application-specific database systems,

including a rule-based query optimizer generator and a persistent programming language, aud li-

2-8

bravies of generic software components that are likely to be useful for many applications. The
system compiler, used for the compilation of the system software, is based on the E programming
language (12), an extension of the object-oriented programming language C++(16). The two stages
of the EXODUS architecture that are addressed and implemented by this thesis project are the

Parser and Catalog Manager.

‘ QUERY)

QUERY E
OPTIMIZER >

& COMPILER
COMPILER

COMPILED
QUERY

\ 4

PARSER

Y

OPERATOR
METHODS
CATALOG
ACCESS

MANAGER - METHODS

A

STORAGE
MANAGER
X

SCHEMA
DATABASE

Figure 2.5. EXODUS. archifecture

2.5.1 Parser. The main purpose of the parser is to provide a way to link the user with
the database system through a high level query language such as SQL. The EXODUS tool kit
does not provide a parser development tool, so an alternative had to be found. The alternative
we chose to use is the popular UNIX tools of YACC (Yet Another Compiler Compiler) and LEX

(Lexical Analyzer). These tools have been proven successful in the associated projects by both

NN

Co Ul g L b e g

L B R SR L

i, 708 o S 00 o8 Aol SR L S £ L

e Mp AT

W 2 LA I TS

A A5, A D B e o

R AAR 1 9P e L

Ramakrishnan (11) and Mankus (10).

2.5.1.1 YACC program. YACC is a general tool for describing the input to a computer
program. The YACC user specifies the structure of the input together with the code to be invoked as
cach structure is recognized. YACC turns such a specification into a subroutine called yyparse that

handles the input process (6). The general format for a YACC program is described in Appendix A.

2.5.1.2 LEX-a lezical analyzer. LEX is a program generator designed for lexical pro-
cessing of character input streams. It accepts a high-level specification for character string matching,
and produces a program in a general purpose language that recognizes regular expressions. The

program generated by lex is called yylez (6).

LEX generates lexical analyzers in a manner analogous to the way YACC creates parsers.
The user inputs a specification of the lexical rules of a language using regular exprussions together
with fragments of C to be executed when a matching string is found. The general format for a

‘LEX program is described in Appendix A.

2.5.1.8 SQL/NF translalor parser implemeniation. LEX supp the ability to scan
and identify the words associated with the high level language of SQL/NF and convert them into
a predefined set of tokens. Once a token is returned from the scanner, the parser (YACC) matches
the token to-a predefined set of grammar rules. Within the grammar rules, statements in the furm
of C code procedure calls are executed to direct the database system to carry out some specific
operation. The operations performed will generate input to and manipulate the catalog manager

in addition to building the query tree.

2.5.2 Catalog manager. The catalog manager is the mechanism responsible for ensuring
proper organization of relational tables within the database. Whenever a new database s created

or a current one opened, all references to any of the relations and tlieir associated attributes

2-10

23

DIV 43

TN

SRR VI LTI

At L1 s

st e

et T s e AN

arc handled by the mechanisms implemented by the catalog manager. The manager should also
provide for persistence of the database information after termination of the database prograsm.
The EXODUS tool kit provides a generic catalog manager that can be used to provide for these
requirements. Information required by the catalog manager to load its tables will be obtained
through the scanning and parsing of the data definition arguments of the SQL/NF commands.
Ouce the information is passed from the scanner, through the parser, and to the catalog manager,
the data must be inpul into its tables in a particular format defined within the Data Dictionary.
The information generated by the parser and stored in the Data Dictionary consists of two tables.
The first table contains the definitions of each relational scheme and the attributes, both relation
valued and atomic valued, associated with each scheme. The definitions of the relational tables are
stored in the second table of the Data Dictionary along with their associated scheme identificrs.
The composition of the Data Dictionary is identical to the one used by Mankus(10) and is described

in Section 3.4 of his thesis.

2-11

Mty LT b Toy g Dl b e it ST ey

III. Colby Algebra & SQL/NF

3.1 Colby Algebra

The nested relational algebra developed by Latha S. Colby at Indiana University (4) is equiv-
alent in expressive power to the nested relational algebra of Thomas and Fischer (17) discussed
in the previous chapter. The Colby algebra, however, allows queries to be expressed more natu-
rally and succinctly without the need for restructuring the relation being operated upou. In the
next section we will define the Nested Relational Model according to Colby (4). TFollowed by a

description of each of Colby’s NRM operators.

3.1.1 Definilions for the Nested Relational Model. Let A be the universal set of attribute
names and relation scheme names. A relation scheme of a nested relation is of the form R(S) where
R € 4 is the relation scheme name and S is a list of the form (A, As,..., A;) where each A; is
cither an atomic attribute or a relation scheme of a subrelation. If A; is a relation scheme of the

form R;(S;), then R;, the name of the scheme, is called a relation-valued attribute of R.

For each atomic attribute A, in A, let D; be the corresponding domain of values. An instance
r of a relation scheme R(S), where S = (A1, A4s,...,4y), is a set of ordered n-tuples of the form

(a1,a2,...,a,) such that:

1. if A; is an atomic attribute, then a; € D;.

2. if A; is a relaticn scheme, then a; is an instance of A;.

An instance of a relation scheme is also referred to as a (nested) relation.

Let R(S) be a relation scheme. Attr(R)is the set of all (atomic and relation-valued) attribute
names in S. RAttr{R) is the set of all relation- valued attributes in S. FAttr(R) is the set of all
flat or atoniic attributes in S. deg(R) is the number of attributes in S. lenceforth, when we refer

to a relation scheme, we will zefer to it by its name alone (e.g., R instead of R(5)). Let r be an

3-1

instance of R and let ¢ € » (a tuple in relation #). If A € Attr(R) then t(A) is the value of t in
the column corresponding to A. If B C Atir(R) then t[B] = {[A1)t[Aq]...t1[An] where A; € B

(1 £ < m). Let ¢ be a condition on R if:

1. cis NULL;
2. ¢ = a®b where,
(a) ais an atomic attribute of R and b is an atomic attribute or an atomic value, @ and b

have compatible domains and © € {<,>,<,>,=,#}.

(b) @ is a relation-valued attribute of R and & is a relation-valued attribute of R or an

instance of the domain of a and © € {C,D,C, 2, =, #}-

(¢) bisa relation-valued attribute of R and ais a tuple in some instance of b and © € {€, 3}.
3. ¢l and ¢2 are two conditionson Rand ¢ = ¢l1Ac2orc = ¢clVec2orc = —cl.
If t is a tuple in some relation » € R, then:

1. Ifc = @ then c(t) = .

2. If ¢ = a®b then c(t) -

(a) t[a)Ots, 4 and b are both attributes.
(b) a®t[b] if only b is an attribute.

(¢) t[a)Ob if only a is an attribute.

3. ¢(t) = cl(t) Ac2(t), cl(t) v c2(t) and —cl(t) when ¢ = ¢l Ac2,¢c = ctVe2ande = —el

respectively.

In the example nested relation “Company” shown in Figure 2.4:

1. R(dno, dname, loc, Emp(eno, ename, sal, Children(cname, dob))) is the scheme of the rela-

tion.
2. Attr(R) = { dno, dname, loc, Emp }
3. FAttr(R) = { dno, dname, loc }

4. RAttr(R) = { Emp }

8.1.2 The Nested Relational Recursive Algebra. The main objective of the recursive algebra
is to provide a way to access and manipulate data at all levels of a nested relation. The advantage of
Lhis is that it can be done without restructuring the relation in order to extract data that is nested
at different levels within the relation. The operators of this algebra are defined in an extended
form (recursively) so that they can perform their operations on all sublevels of the relation without
having to use a special operator as a “navigator” to search through the relation. (The “navigator”
operator is further explained in section 2.3.3.) This also reduces the requirement for the number of
nest and unnest operations that would have to be performed without the recursive ability. In the
following sections we briefly describe the operators as defined by Colby. A list of the formats and

the formal definitions for all the operators can be found in Appendix B.

8.1.2.1 Selection (¢). The selection operator can operate on attributes at any level of
the relation, even when the selection condition is not at the outermost level. This is done without
having to flatten the nested relation first. The select list is the key to the recursive nature of this
operator. Each subrelation (R,) is tested to see if tuples exist so that the condition on R, is met.
This is done for all subrelations until the bottom most subrelation is tested and the condition on
Ri is met. If every condition is not met (ie., an empty set is returned for one of the subrelations)

then an empty set is returned for the operation.

The selection operator requires three elements to select tuples from a nested relation. First,

the source relation name. The second element is a select list which permils the operator to 1cach

3-3

COMPANY

dno | dname | loc Emp
eno | ename | sal Children
cname | dob
001 Eng | Bldgd | 111 Smith | 12000 Jane May
Dave | April
121 Jones | 12500 Bob Oct
Sue Jan
002 Mkt | Bldg2 | 222 [Adams | 18500 Mary Dec
Mark | March
Rick June
245 Carter | 18000 Carol Aug
Mike Oct
263 Davis | 20000 Bill Feb

Figure 3.1. Nested Database Table

any attribute, atomic or relation valued, and permits the operator to descend to any depth of the
relation. The last element is a set of conditions or predicates which can be specificd for the top-
level atomic attributes or on any of the lower nested relations. The generic format of the selection

operator is as follows:

o(Relationcondition(Select list))

As an example, to select those tuples from the COMPANY relation (sce Figure 3.1) in which

thie department name is MIXT and the employee makes more than 18000 will require the following

query:

0(COMPANYgname= s i1 (EMpsar>15000))-

The condition, dname = “MKT”, on the top level atomic attribute, dname, always follows

the source relation name, COMPANY, while the lower level condition, sal > 18000, is specified

dno | dname | loc Emp

eno | ename | sal Children
cname | dob
002 Mkt | Bldg2 | 222 | Adams | 18500 Mary Dec

Mark | March
Rick June
263 Davis | 20000 Bill Feb

Figure 3.2. SELECT operator results

within the select list after the subrelation name, Emp. The resultant set of tuples are shown in

Figure 3.2.

8.1.2.2 Projection (7). The projection operator can operate on attributes at any level
of the relation, even when the attribute(s) being projected are not at the outermost level. This is
done, like the selection operator, without having to flatten the nested relation first. The key to the
recursive nature of this operator is the project list. The attributes being projected are identified
by R, which can be either atomic or relation-valued. If R, is relation-valued then Li identifies the
subrelations and/or atomic attributes of the subrelation R, that arc to be projected, and so forth.

This will produce a subset of the database with the header identified by the project list.

The projection operator requires two elements to project out the requested attributes from a
nested relation. First, a project list permits the operator to reach any attribute, atomic or relation
valued, and project out the contents of a single attribute column or an entire subrelation. 1t also
permits the operator to descend to any depth of the relation. The second element is the source

relation name. The generic format of the projection operator is as follows:

w((Project List) Relation).

As an example, to project the attributes of ename and cname from the nested relation COM-

PANY (see Figure 3.1) the following query would be made:

3-5

Emp

ename | Children

cname
Smith Jane
Dave
Jones Bob
Sue
Adams Mary
Mark
Rick
Carter Carol
Mike
Davis Bill

Figure 3.3. PROJECT operator results

7((Emp(ename, Children(cname))COM PANY')

The project list contains two nested subrelations of Emp and Children, followed by another
project list of the desired attributes for that subrelation. In this case, the desired atiributes for
Emp are the atomic attribute of ename and the subrelation of Children, with the desired attributes
for Children being the atomic attribute of cname. This project list precedes the desired relation
name, COMPANY, in which the project is to operate. The resultant set of 2 tuples are shown
in Figure 3.3. Smith and Jones are members of the first tuple and Adams, Carter, and Davis are

members of the second tuple.

3.1.2.8 Nest (v). The operators nest and unnest restructure or change the way tuples
in a reJation are grouped together in a nested relation. The nest operator and the unnest operator,
described in the next section, restructure only the subrelation that is specified witliout affecting any
of the other attributes in the relation. The nest operator groups targeted atiributes situated at the

saine level of nesting which agree on all the attributes that are not in the targeted attributes, and

3-6

COMPANY

| dno| dname | eno| sal [ename |

Figure 3.4. INF Database Table header

nests this group one level deeper within the relation. The nest list identifies the targeted attributes,

alomic and relation-valued, which are tc¢ be grouped together for the new subrelation.

The nest operator requires three elements. First, a list of attributes that are to be nested at a
deeper level. Second, the name of the relation or subrelation that currently contains the attributes
in the list to be nested. The last element is the name of the relation-valued attribute that the

atiributes will be nested under. The generic format of the nest operator is as follows:

v(Relation (Nest list) — New Subrelation)

As an example, to nest the attributes, (eno, ename, sal), of the COMPANY relation of
Figure 3.4 into the subrelation Emp to form the corresponding relation COMPANY in Figure 3.5,

the following statement would be required:

v(COMPANY (eno,ename, sal) — Emp)

The nest list, (eno, ename, sal), contains the names of the attributes that are to be nested.
This is preceded by the name of the relation, COMPANY, which currently contains the attributes
in the nest list. The nest list is then followed by the name of the new subrelation, Emp, that will

now contain the attributes in the nest list.

3.1.2.4 Unnest (u). The unnest operator performs the reverse of the nest operator.

This is done by ‘ungrouping’ or flattening out the subrelation identified in the unnest list into thic

3-7

COMPANY

dno | dname Bmp
eno | sal [ename

Figure 3.5. NEST operator results

level above it. Multiple instances of the outer level are generated for each tuple that was originally
associated with it in the nested form. This operator only requires two elements. First, the name
of the relation that contains the subrelation to be unnested. Second, an unnest list which can
contain the single name of a top-level subrelation or another unnest list which contains & lower
level subrelation that is to be flattened back to the INF. The generic format of the winest operator

is as follows:

p(Relation(Unnest list))

As an example, to unnest the relation found in Figure 3.5 back to the original relation found

in Figure 3.4 the following statement is used:

u(COMPANY (Emp))

The unnest list, (EMP), contains the nested subrelation to be flattened. This is preceded
by the relation name, COMPANY, which will now contain the flattened version of the nested

subrelation.

3.1.2.6 Cartesian-Product (x). The cartesian product operator allows cross-products
to be performed between a relation or a relation-valued attribute and another relation. This

allows us to operate on tuples of a relation valued attribute nested deep inside the structure of the

3-8

REL3

X Y
A | A
x1 z1| al
z2 | a2
x2 z3 | a2

Figure 3.6. Nested Database relation

REL4
Z W

o |1
A sl | t1
s2 | tl
23 s2 | t2

Figure 3.7. Nested Database relation

relation scheme. The result of this operation is a relation whose scheme has the attributes of both
the relations. Note: this operation is defined so that one operand can be a relation or a subrelation
while the other operand has to be a relation, since it is illogical to obtain a_cross-product of two

subrelations.

The cartesian-product operator requires three eiements to perform the cross-product of two
rclations. The first two arc the names of the relations or subrelations to be acted upon (see Note
above). The third element is the join path which is defined in Appendix B. This path indicates
the location of the attributes that the two relations are operated upon, in other words it is the
navigator used to reach the nested attributes of the subrelation required for the cross-product. The

generic format of the Cartesian-product operator is as follows:

x(Relation1(JoinPath), Relation2)

3-9

X Y
Z1 Al 2D %Y
A
xl | 21| al] z1]s1]| tl1
s2] t1

z1] al| 23| s2]| t2
z2 | a2 | z1 | sl tl
s2 | t1
22| a2 | 23| s2| t2
x2 | 23] a2 21| s1| tl
s2 | tl
23 | a2 | 23] s2| t2

Figure 3.8. Result from Cartesian-Product

An example of the cartesian-product operator to obtain the cross product of REL3 of Fig-

ure 3.6 and RELA4 of Figure 3.7 would be formulated as follows:

x(REL3(Y), REL4)

This would form the cross product using the Y subrelation of REL3 as the operand along

with REL4. See Figure 3.8 for result of operation.

3.1.2.6 Join (). The join operator has essentially the same properties and results
as the cartesian-product operator (see section 3.1.2.5) followed by a selection (sce scction 3.1.2.1)
on the tuples that agree on the values of their common attributes. The geucric format of the join

operator would be as follows:

>4 (Relationl(Join Path), Relation2)

An example of the join operator to obtain the join of REL3 of Figure 3.6 and REL1 of

Figure 3.9 would be formulated as follows:

3-10

C
D El T
G| H
al | bl gl | h1] el | f1
g2 | h2
g3l h3fe2] N1
g4 | hd
a2 | blj gb| h1| e3| £2
g6 | h2
g6 hd| ed] 3

Figure 3.9. Nested Database Relation

X Y
4|1 Al B C
D B I
Gl
x1]zl | alfbl|gl]hl}el] Ml
g2 | h2
! gd| hd3 | e2| 11
gd | M
z2 | a2 { b1 | go| ha | e3 | 12
g6 | h2
g6] hd | ed| 13
x2 [23] a2 | bl | gb| hl1| e3 | 12
g6 | h2
g6 | hd | ed | 13

1 e

Figure 3.10. Result from Join operator

St LB

m

ba (REL3(Y), REL1)

koLl e g b

This would form the join using the Y subrelation of REL3 as the operand along with REL1. Sce

Figure 3.10 for result of operation.

L U RIS e Sl

3.1.2.7 [Ezlended Binary Operalors. The binary operators union, difference, and in-

tersection normally operate on entire tuples . These operators take two relations whicl have the

3-11

5 e A B, B 2 i) gl 1

D Ll F
G| U
al | bl | g2| h2 | el | fl
g3| hd| e2| 11
a3 [b2 | gd| h2 | e2 | 12
g5 | h2
a2 | bl | g6 hdl ed | 13

Figure 3.11. Nested Database Relation

same relation scheme and return the union, difference, and intersection of the relations as defined
in normal set theory. The scheme of the resultant relation from these operations will be the same as
that of the relations involved in the operation. The extended versions of these operators (op®) alluw
us to perform the operation between two relations so that the associated tuples of auy subrelations
are also operated upon. This is done by testing each attribute at every level of one relation and
comparing it to each corresponding attribute at every level of the second relation. The relations in
Figure 3.9 and Figure 3.11 are used to illustrate these extended operators and the corresponding

results are shown in figures 3.12, 3.13, and 3.14.

o Union (U,U®).

The union of two relations in “standard” relational algebra produces those tuples which are
contained in both of the operand relations. This is also true for the extended version of the
operator, including the associated tuples of any subrelation. The operator requires only two
elements, both of which are the names of the relations to be operated upon. For example, to

perform a union of all the tuples of REL1 and REL2 the following statement is required.

U*(REL1, REL?)

3-12

Al B C
D B I
Gl H
al | bl g2| h2jel | 11
gl | hl
g3]| hd | e2 | fl
g3l hd
gd | hd
a3 | b2] gd] h2 | e2 | 12
g5 | h2
a2 | bl| g6 hd | ed | 13
gd| hl] e3] 2
g6 | h2

Figure 3.12. Result from Union operation

The result is shown in Figure 3.12. Without the extension the result would contain multiple
listings of the two al tuples from REL1 and REL2 because the nested values would not be

considered.
« Difference (—, —°).

The difference of two relations in “standard” relational algebra produces those tuples which
are not common to both of the operand relations. That is all tuples which are in the first
relation which are not in the second relation. This is also true for the extended version of the
operator, including the associated tuples of any subrelation. The operator requires only two
elements, both of which are the names of the relations to be operated upon. TFor example, to

perform the difference of all the tuples of REL1 and REL2 the following statciment is required.

—¢(REL1, REL?)

The resuit is shown in Figure 3.13. Withoui the exiension ilie resalt would be an cpty

set because the A and B values from RJEL1 and REL2 are the same except for a3. Therefor

3-13

Al B O
D ElF
G H
al [bl | gl| hl]el} {1
g2 | h2
g3 | h3| e2] f1
gd | hd
a2 | bl| gb| hl| e3 | £2
g6 | h2

Figure 3.13. Result from Difference operation

Al B @]

D) ElF
GTH
(a2 [bl] 0| M| cA] 13

Figure 3.14. Result from Intersection operator

there are no tuples that are in REL1 but not in REL2 because the nested values would not

be considered.
Intersection (N, N¢).

The intersection of two relations in “standard” relational algebra produces those tuples which
are common to both of the operand relations. This is also true for the extended version of the
operator, including the associated tuples of any subrelation. The operatot requires only two
elements, both of which are the names of the relations to be operated upon. For example,
to perform an intersection of all the tuples of REL1 and REL2 the following statement is
required:

N*(REL1, REL?)

The result is shown in Figure 3.14. Without the extension the result would contain all listings
of the two al tuples and a2 tuples from REL1 and REL?2 because the nested values would

not be considered only the top most attribute values (A and B).

3-14

3.2 SQL/NF

3.2.1 Introduction. Roth, Korth and Batory (13) have proposed an extension to SQL called
SQL/NT. This extension has all the power of standard SQL as well as the ability to define nested
relations in the data definition language, and query these relations directly in the uested furm. In
addition tc¢ adding the nest and unnest operations to the language, they also modified thc existing
language to handle accessing nested relations. The method used by SQL to define relations was also
miodified for definin, nested relations. In this section we will describe the SQL/NF query language

as defined in (13). The BNF for the language can be found in Appendix C.

Before we introduce the SQL/NF language itself, let us introduce two sumple nested databases
(sce Figure 3.15). We will use variations of these data bases as examples to help better under-
stand the .anguage definitions. First, we have an employce relation, EMPLOYEE, with atiributes
(NAME), (AGE), department number (DNO), (CHILDREN), and (PROJECTS). The CHILDREN
relation in each EMPLOYEE tuple has attributes (NAME), {AGL), and (TOYS). The TOYS sub-
relation in each CIIILDREN tuple has attributes (NAME), and (COLOR). The PROJECTS subre-
lation in each EMPLOYEE tuple has attributes (NAME), and (NUMBER). Next, we have a com-
pany relation, COMP, with attributes department number (DNO), department name (DNAME),
location (LOC), and employee (EMP). The EMP subrelation in each COMP tuple has attributes
cmployee number (ENO), employee name (ENAME), salary (SAL), and (CHHILDREN). The CHIL-
DREN subrelation in each EMP tuple has attributes child name (CNAME), and date of birth

(DOB).

3.2.2 SQL/NF Query Facilities. The basic structure of an SQL/NI expression consists of

three main clauses: SELECT, FROM, and WHERPE.

o The SELECT clause contains the list of attributes, from the relations in the FROM clause,

desired as a result of the query.

3-156

EMPLOYEE
NAME | AGE | DNO CHILDRIN PROJILCTS
NAME | AGE TOYS NAME | NUMBER
NAME | COLOR,

I I | I I I I I | |

DNO | DNAME | LOC EMP
ENO [ENAME | SAL | CHILDRISN
CNAME | DOB

I | I I I [1 | |

Figure 3.15. EMPLOYEE and COMP Relations

o The FROM clause contains the list of relations to be used to produce the desired query results.

o The WHERE clause contains a list of predicates which qualify the selection of tuples from

the relations in the FROM clause.

The basic construct of an SQL/NF query is as follows:

SELECT attribute-list
FROM relation-list

WIHERE predicate-list;

This select-from-where(SFW) expression is conceptually executed by performing a Cartesian prod-
ucl of all the relations in the relation list, selecting only the tuples that mect the conditions in the
predicate list, and then projecting only the attributes in the attribute list. If no tuple sclection
conditions are required, the WHERE clause can be omitted. If all attributes of the relation list
are desired then the attribute list can be replaced with the key-word ALL, to conform with the

proposed standard relational d.tabase language known as RDL (1)

3-16

SQL/NFT also allows an even easier way to access the entire contents of a relation by replacing
the “SELECT ALL FROM relation-name” clause with only the “relation-name.” For example, to
sclect all the tuples from the COMP relation in department number 123 the following query would

be used:

SELECT AL
FROM COMP
WHERE DNO = 123;

Or using the simplified notation:

COMP WHERE DNO = 123;

Sometimes it is easier for the user to list the attributes which are not desired instead of listing all
the attributes desired. For this, SQL/NT allows the construct “ALL BUT attribute-list”. As an
example, if the user desires to obtain all tuples in the EMPLOYEE relation which have a department
number 123 it would be redundant to list the DNO attribute for all the tuples therefore the following

query would list all the attributes but DNO:

SELECT ALL BUT DNO
FROM EMPLOYEE
WHERE DNO = 123;
3.2.2.1 Nested Query Expressions. The principle of orthogonality has been usefully
cinployed in defining the nested data structure. Wherever a scalar (atomic) valued attribute could
occur in a INT relation, a relation valued attribute can now occur. SQL/NT has the closure
property wherc the result of any query on one or more relations can also be considered a relation.

The principle of orthogonality allows a SFW-expression wherever a relation name could be used.

Therefore, in SQL/NF SFW-expressions are allowed in the FROM clause. For example, consider

the following query:

SELECT NAME
FROM GCOMP, (SELECT ALL
FROM EMPLOYEE
WHERE AGE > 35)
WHERE COMP.DNO = EMPLOYEE.DNO AND DNAME = “SUPPLY”;

This query would produce the name of all the employees in the SUPPLY dept who are over 35 yeats
of age. The SFW-expression in the FROM clause produces a relation with the same attributes as
the EMPLOYEE relation but contain only the tuples that have a value > 35 for the AGE attribute.
Then a Cartesian product is performed with the resultant rclation and the COMP .elation. The
tuples which meet the conditions of the WHERE clause are then selected with the NAME attribute
from the EMPLOYEE relation being projected out. An equivalent SQL/NTF query to the above
query which is more appropriate to what is actually taking place in the FROM clause would be as

follows:

SELECT NAME
FROM COMP, (EMPLOYEE WHERE AGE > 35)
WHERE COMP.DNO = EMPLOYEE.DNO AND DNAME = “SUPPLY”;

A more complex example containing nested query expressions in the SQL FROAM clause
involves the UNION operator. The standard SQL/NF format for using the UNIOV o, = .. s as
follows:

query-expression UNION query-expression;

For example, given two relations COMP.A and COMP.B which have the same scheme as the
COMP relation. If these two companies merge and it is desired to merge the two rclations the
following SQL/NT query would be used:

COMP_A UNION COMP_B;

If a condition is set on what tuples are desired in performing the UNION, then in SQL the same
condition must be in the WHERE clause for both SFW-expressions. For examiple. given thc previvus

query with the condition that only the tuples with a location of “DAYTON" are desired, then the

SQL/NF query would be:

3-18

SELECT ALL
FROM (COMP.A UNION COMP_B)
WHERE LOC = “DAYTON”;

SFW-expressions in the SELECT clause are applicable when using a nested database. This is
because attributes in a nested database can be relation valued attributes, thercfore, subrelation
names can occur in the SELECT clause and under the principle of ortliogonality SFW-expressious
can also occur. The only restriction is that the relation name used in the SELECT clause must
be a relation valued attribute of one of the relations identified in the FROM clause. For example,
if all the information contained in the relation valued attribute PROJECTS of the EMPLOYELE

relation along with the employees name, the following query could be used:

SELECT NAME, PROJECTS
FROM EMPLOYEE;

This query shows how a subrelation name (PROJECTS) would appear in the SELECT clause.

If the user requires to know which employees are working on project “X” then a condition

must be set on project name and the following query could be used:

SELECT NAME, (SELECT NUMBER
FROM PROJECTS
WHERE NAME = “X”)
FROM EMPLOYEE;

This query shows how a SFW-expression would appear in the SELECT clause. Note that PROJECTS
is a relation valued attribute of EMPLOYEE and that the nested WIIERE clause condition only

applies to the “NAME” attribute of the subrelation PROJECTS.

To illustrate a more complex nested SFW-expression in the SELECT clause, let's query the

EMPLOYEE relation for the name of the toys that employee Smith’s children have:

SELECT (SELECT (SELECT NAME
FROM TOYS)
FROM CHILDREN)
FROM EMPLOYEE
WHERE NAL. = “SMITH”;

3-19

Note that SF-expressions in the SELECT clause are enclosed by “()" for each level of nesting and
can only list attributes from the relation valued attribute identified in the associated FROM clause.
Since the NAME attribute under the TOYS subrelation is at the third level of nesting, three nested

SELECT statements are required to reach this level.

Nested SFW-expressions in the SQL/NTF WHERE clause follow the same requirements as in
SQL. That is, the SFW-expression can’t stand alone in the WHERE clause, it must be an element

of:

1. Comparison predicate.
2. BETWEEN predicate.
3. IN predicate.

4. LIKE predicate.

5. EXISTS predicate.

6. NULL predicate.

Consider the following example using the EXISTS predicate:

SELECT DNAME, EMP
FROM COMP
WHERE EXISTS (EMP WHERE SAL < 25000);

The resuiv of the above query on the COMP relation would produce all the department names
along with all the information contained in the EMP subrelation for all the departments that have

at least one EMP salary value less than 25000,

3.2.2.2 Funclions. In SQL, the argument to a function like AVG (average) can only be
an atomic valued attribute column in a relation and the result is a single scalar value. SQL/NT lias
expanded the argument for functions to include relation valued atttibutes. Then, by the principle

of orthogonality, the argument can include any expression that evaluates to a relation.

3-20

Consider the SQL query to obtain the average age of the employees in the EMPLOYEE

relation:

SELECT AVG(AGE)
FROM EMPLOYEE;

The argument to the AVG function is the entire AGE column of the EMPLOYEE relation, and
there is no vehicle to place a condition on selection of tuples averaged by the function (e.g. WIHERE
AGE > 25). This is remedied in SQL/NF by applying the desired relation to the function and not

just a single attribute. Therefore the SQL/NT equivalent to the above query would be:

AVG (SELECT AGE
FROM EMPLOYEE);

The same query with the condition that the average age be determined for those employces over

25 would be:

AVG (SELECT AGE
FROM EMPLOYEE
WHERE AGE > 25);

Now let us consider a more complicated query where we want to determine the total amount made
by all the employees in the COMP relation, who are in the Engineering department and make less

than $50000:

SELECT (SUM (SELECT SAL

FROM EMP

WHERE SAL < 50000)
FROM COMP
WHERE DNAME = “ENGINEERING”);

Another example, utilizing a function in the WHERE clause, is the query which identifies all the

departments in the COMP relation that have more than 5 employees:

SELECT DNO
FROM COMP
WIHERE COUNT (EMP) > 5;

3-21

NN TE R WGP L2 WY

i bl !

In SQL, queries of this type are usually formulated using GROUP BY and HAVING clauses. These
are some of the hardest to formulate in SQL, and operate under a different set of rules fromn standard
SQL queries. Due to the ability of SQL/NT to allow nested queries in the SELECT clause and
the structuring ability of the nested model to already have attributes “grouped by”, GROUP BY
and HAVING are totally unnecessary. By structuring relations appropriately, we can turn any
previous GROUP BY or HAVING query into a straight-forward SFW-expression. The elimination

of GROUP BY and HAVING is a major advantage of the nested model(13).

An additional advantage of SQL/NF’s ability to accept relations or nested SFVW-expressions as
input to functions is to apply the function to several attributes simultancously to » multi-attribute
relation. The following example of this ability was given in (13): Suppose we have a Sales rclation
with employee number(eno) and 12 sales attributes (Jan-sales, Feb-sales, ..., Dec-sales) showing
total sales for each month of the year for the employee. Then to get the total of all sales in each

month we can write:

SUM (SELECT Jan-sales, Feb-sales, Mar-sales, Apr-sales,
May-sales, Jun-sales, Jul-sales, Aug-sales,

Sep-sales, Oct-sales, Nov-sales, Dec-sales
FROM Sales);

Or using “ALL BUT attribute-list” the query can be simplified to:

SUM (SELECT ALL BUT eno
FROM Sales);

The SUM function is applied to each column of the argument relation. In geucial a column function,
(SUM, AVG, MAX, MIN), reduces a relation to a single tuple with the same number of attributes,
by applying the function to each column of the relation. A table function(COUNT), reduces a
relation to a single tuple with one attribute. Thus, the result of applying a function is always a

single tuple relation (13).

When a column or table function is applied to a nested relation it does not leave the result in

a nested form. Because it would not make sense to retain the relation structure for a single tuple.

3-22

Therefore the result from a function applied to a nested relation is unnested one level.

8.2.2.8 NULL values and operations dealing with NULLs. The treatment of NULL
values encountered in a tuple by functions in SQL/NF is different from SQL. In SQL/NT an error
condition is raised when a NULL value is encountered while in SQL the value is simply ignored.
This forces the SQL/NF user to remove any NULLs before applying the function and prevents

inaccurate results from a query over a database that contains NULL values.

SQL/NT provides a method for dealing with subsumed tuples which is not available in SQL.
A subsumed tuple is like a duplicate tuple as they do not provide any morc information thau sume
other tunle in the relation. For example the tuple t=<SMITII, NULL, NULL> is “subsumed”
by the tuple s=<SMITH, 123, MKT> and the tuple r=<SMITII, NULL, ENG> while it is not
“subsumed” by the tuple g=<Jones, 111, ACCT>. The information in tuples s and » contain all
the information in tuple ¢ therefore it can be “subsumed” and considered a duplicate tuple. The
climination of duplicate tuples in SQL/NF is accomplished the same way as SQL by using the
function DISTINCT, but this function does not handle subsumed tuples. The SQL/NF function
SUBSUME can be used to eliminate tuples that are “subsumed”. For example, to get employee
names and project names from the EMPLOYEE relation and eliminate any subsumed PROJECTS

tuples, we would use the following query:

SELECT NAME, SUBSUME (SELECT NAME
FROM PROJECTS)
FROM EMPLOYEE;

Another method available in SQL/NT for dealing with NULL values is the PRESERVE clause.
This clause is useful when performing a “join” on two or more relations, identified in the FROM
clause, based on conditions in the WHERE clause and it is desired to “preserve” the tuples of onuc
of the relations that do not meet the conditions of the WITERE clause. The tuples of the rclation
in the PRESERVE clause are included with the results of the STW-expression with the attribute

values of the other relations set to NULL for the “preserved” tuples. For example, if the two

3-23

relations EMPLOYEE and COMP are joined on the DNO common attribute and it is desired to
also include any tuple in the COMP relation that does not have any matching EMPLOYEE tuples

we would use the following query:

SELECT NAME, AGE, DNO, DNAME, LOC
FROM COMP, CMPLOYEE

WHERE COMP.DNO = EMPLOYEE.DNO
PRESERVE COMP;

The result of this query would produce a relation with the attributes NAME, AGE, DNO, DNAME,
LOC. Matching the tuples in the COMP relation and EMPLOYEE relation with the same DNO
value. In addition, any tuple in the COMP relation that does not have a corresponding DNO value
in the EMPLOYEE relation will be included in the result with the attribute values for NAME and

AGE set to NULL.

3.2.2.4 Don’t Ture values. When comparing tuple literals with attribute values in the
WHERE clause, SQL/NF has provided for a “wild card” value in the tuple literal. The wild card
value is the question mark (?). The “don’t care” question mark can be used for any constant value
in a tuple literal. For example, to find the name of all the employees in the EMPLOYEE relation

who have worked on project “X” , we could use the following query:

SELECT NAME
FROM EMPLOYEE
WHERE <“X”, 7> IN PROJECTS;
3.2.2.5 Data and relation restructuring operations. The restructuring operations pro-

vided in SQL/NF for nested relaiions correspond directiy to the NEST and UNNEST algebra

operators as identified in section 2.2.3. The syntax for these operators is as follows:

NEST table-name
ON attribute-list {AS column-namej;

UNNEST table-name
ON attribute-list;

3-24

Where “table-name” can be replaced, via the principle of orthogonality, with “(query-expression)”.
The NEST operator provides for giving the newly created nested relation a name (column-name).

However, if the name is left out the nested relation can't be referenced elsewhere in the query.

Let us consider restructuring the COMPANY relation in Figure 3.4 by nesting the attributes

(eno, sal, ename) in a relation valued attribute Emp. This will be accomplished by the following
query:

NEST COMPANY
ON eno, sal, ename AS Emp;

The resultant structure from this query can be seen in Figure 3.5. To restructure the COMPANY

relation in Figure 3.5 to the COMPANY relation in Figure 3.4 the following query would be used:

UNNEST COMPANY
ON Emp;

Consider the three INF database relation tables in Figure 3.16, these tables can be combined into
the single nested relation COMP (Figure 3.15) by nesting the CIIILD relation within the Employee
rclation and nesting that result within the DEPT relation based on the common attiributes DNO

and ENOQ. This can be accomplished by the following query:

SELECT ALL BUT Employee.DNO
FROM DEPT, (NEST (SELECT ALL BUT CHILD.ENO
FROM EMP, (NEST CHILD
ON Cname, DOB A4S CHILDREN)
WHERE Employee.ENO = CHILD.ENO)
ON ENO, ENAME, SAL, CHILDREN AS EMP)
WHERE DEPT.DNO = Employee.DNO;

To obtain the three relation tables in Figure 3.16 from the COMP relation we would use the queries.

SELECT (SELECT ENO, CNAME DOB
FROM (UNNEST EMP
ON CHILDREN))
FROM COMP;

3-25

DEPT
[DRO | DNAMET LOT!
I I I |

Em'p]lo%ee

I I I I I
CHILD

[CENO | CNAMET] DOB]
I | I |

Figure 3.16. Three Sample 1NTF Relations

SELECT ENO, ENAME, DNO, SAL
FROM (UNNEST COMP
ON EMP);

SELECT DNO, DNAME, LOC
FROM COMP;

The first query would produce the CHILD relation from COMP, the second query would produce
the Employee relation from COMP, and the last query would produce the COMPANY relation

from COMP.

One other restructuring operation known in SQL as the ORDER BY clause is also available
in SQL/NF, with a change in syntax. The function rearranges the tuples of & relation in ascending
(ASC) or descending (DESC) order based on identified attributes (column-name). The syntax

change follows the same structure as the other functions in SQL/NF as follows:

ORDER table-name
BY column-name [ASC|DESC] {, column-name [ASC|DESC)}

Where “table-name” can be replaced, via the principle of orthogonality, with “(query-expression)”.
For example, to obtain a list of tuples from the COMP relation which are in asceuding order hased

on the department name would be as follows:

ORDER COMP
BY NAME ASG;
3.2.2.6 Name inheritance and aliasing. Sometimes a problem occurs when attribute
names of relations used in the FROM clause of a SFW-expression are not unique. This can be a

result of one or more of the following:

1. The need for multiple copies of the same relation being used in a SFW-expression.
2. Attributes with the same name in two or more of the relations in a SF'W-expression.

3. The same name is used in nested relations within a relation.

The solution to the first condition is provided by SQL/NF by using a user defined i1cflerence name
instead of the original table name. This reference name is identified by using the key word AS
followed by the reference name. The syntax being as follows:

table-name AS reference-name;
Where “table-name” can be replaced, via the principle of orthogonality, with “(query-expression)”.
For example, to obtain pairs of all the departments in the COMP relation that are at the same

location the following query could be used:

SELECT COMP_A.DNAME, COMP_B.DNAME
FROM COMP AS COMP_A, COMP AS COMP_B
WHERE COMP_A.LOC = COMP_B.LOC

AND COMP.A.DNO < COMP_B.DNO;

The solution SQL/NT provides for the second condition is similar to the previous solution in that
a refercnce name is also used. However, this reference name is provided by tlie original table name
and not the user. For example, let the DNAME attribute in the COMP relation be called NAME. If
both the COMP and EMPLOYEE relations are identified in the FROM clause of a SFW-expression
and the NAME attribute from COMP and the NAME attribute from EMPLOYEE is desired in

the SELECT clause, they can be uniquely identified as COMP.NAME and EMPLOYEE.NAME.

3-27

The third condition usually appears when the UNNEST operator is used. For example, in
the EMPLOYEE relation NAME is used at the top level as well as in both nested relations of
CHILDREN and PROJECTS. If the PROJECTS nested relation is unnested the result would
produce two attributes with the same name (NAME). SQL/NF avoids this by identifying the
unnested NAME attribute as PROJECTS.NAME using a refeience name from the original relation
name (PROJECTS). Reference names can also be used to simplify query statements by naming
a nested query statement and using that name elsewhere with the SFW-expressivn. For example,
remember the example query for the EXISTS predicate in section 3.2.2.1 where the nested query
expression (EMP WHERE SAL < 2500) was used ir both the SELECT clausc and the WIERE

clause. This query can be simplified using a reference name (SAL_limit) as follows:

SELECT (EMP WHERE SAL < 25000) AS SAL.limit
FROM COMP
WHERE EXISTS (SAL.limit);

3.2.3 Dala Definition Language(DDL). The defining of relations in SQL is accomplished
via the CREATE TABLE command, and the defining of view is accomplished via the CREATE
VIEW command. The CREATE TABLE command incorporates a list of attribute names and their
respective domains (e.g. CHAR, INT, etc.) to define the structure of a relation. Our version of
SQL/NF !, as defined in the BNTF of Appendix C, uses a modified version of this CREATE TABLE
command to allow for nested relations. The SQL/NT version also incorporates a vatiety of integrily
constraints as proposed and defined in the RDL standard(1). These constraints can be specified
along with the attribute names and domains and include (UNIQUE, NOT NULL, REFERENCES,
CHECK, ...).

Let us continue our explanation of the CREATE TABLE command by providing an example

for creating the DEPT relation in Figure 3.16:

INote; Our version is different from the Data Definition Language defined in (13).

3-28

s etk

b e

s Aud

o AN Nt

CREATE TABLE DEPT
(DNO INT 1 UNIQUE NOT NULL,
DNAME CIAR 32,
LOC CHAR 24);

The key words CREATE TABLE are followed by the name of the relation (DEPT) being defined.
This is followed by a list of items which contains the attribute names (DNO, DNAME, LOC) and
their associated domains. The DNO attribute also has the constraints UNIQUE NOT NULL in
the column definition which identify it as the “key” to the relation, for all the values nuust be
unique and can’t be a NULL value. When a nested relation is desired to be created, the attribute
item is replaced by a nested TABLE statement which consists of the key word TABLE followed
by the nested table name and the list of attribute items as in the CREATE TABLE command.
For example, to create t!e nested relation COMP in Figure 3.15 the following CREATE TABLE

command would be used:

CREATE TABLE COMP
(DNO INT 1 UNIQUE NOT NULL,
DNAME CHAR 32,
LOC CHAR 24,
(TABLE EMP
(ENO INT 1 UNIQUE,
ENAME CHAR 32,
SAL FLOATA,
(TABLE CHILDREN
(CNAME CHAR 24,
DOB CHAR T)))));

In order to simplify the definition of nested relations, SQL/NF allows the definition of rclation
“schemes” separately from the definition of the relations themselves. This is accomplished by the
CREATE TYPE command, which follows the same format as the CREATE TABLE command.
The only difference between these two commands is that the CREATE T'YPE command specifics
table definitions without actually creating a table. The scheme name can then be used in place
of the list of attribute items, thus simplifying the definition. This command is very uscful wheu
deeply nested relations are being defined or when the same type of nestud relation appuars tivie

than once in a relation definition. For example, to create the COMP relation a scheme can be

3-29

defined for the CHHILDREN relation and the EMP relation and then used in defining the COMP

relation as follows:

CREATE TYPE CHILD
(CNAME CHAR 24,
DOB CHAR 7);

CREATE TYPE EMPLOYEE
(ENO INT 1 UNIQUE,
ENAME CHAR 32,
SAL FLOAT A,
(TABLE CHILDREN CHILD));

CREATE TABLE COMP
(DNO INT'1 UNIQUE NOT NULL,
DNAME CHAR 32,
LOC CHAR 24,
(TABLE EMP EMPLOYEE));

The SQL CREATE VIEW command is also provided in SQL/NF to provide views of nested rela-
tions. The syntax is as follows:

CREATE VIEW table-name AS query-expression
For example, to create a view of the COMP relation which does not include the SAL attribute in

the EMP relation valued attribute would be defined as follows:

CREATE VIEW Comp.WO_SAL AS
SELECT DNO, DNAME, LOC, (SELECT ALL BUT SAL
FROM EMP)
FROM COMP;

The DROP TABLE, DROP TYPE, DROP VIEW commands all operate iu the same way, in that
they simply delete a Table, Type, or View from the symbol table defined by a DDL statecment. The
commands all follow the same syntax rules which is simply to identify the name of what is to Le
deleted following the key words. For example, to delete the relation table COMP from the symbol

tabie the following command would be used:

DROP TABLE COMP;

3-30

3.2.4 Data Manipulation Language (DML). In this section we discuss the commands used
in SQL/NT to store, modify, and erase data from relations in a database. The DML commands
can be thought of as functions, for they produce relations from relations with the added eflect of
replacing the old relation with the resultant relation. The syntax for these commands (STORE,
MODIFY, ERASE) is adapted from the RDL standard (1) with the additional ability to work with

nested relations.

The STORE command is used to add new tuples to a relation via a user defined set of tuples
or via a query specification to another relation. For example, to add a two new employees to the

Employee relation in Figure 3.16 the command would be:

STORE Employee
VALUES <123, SMITH, 111, 25000>
<124, JONES, 222, 18000>;

The command also has an option where the user can specify which attributes are to be used. This is
accomplished by an attribute-list following the relation name. Consider the newly created CIILD
relation in Figure 3.16. If the user wants to enter all the ENO values from the Employce tclation
into the CHILD relation without entering them by hand, the following command statement can be

used:

STORE CHILD (ENO)
SELECT ENO
FROM Employee;

As each new tuple is stored in the CHILD relation, the value for ENO will be obtained {rom the
Employee relation and the values for CNAME and DOB will be set to the default value defined in

the CREATE TABLE definition or to NULL if no default is specified.

When dealing with a nested relation, the attribute-list will reflect the location of the attributes
desired by identifying the name of the relation valued attribute followed by an attribute-list for that

rclation?. For example, to store a new department in the COMP relation the following cominand

2Note: Our version of the Data Manipulation Language is different from the DML defined in (13).

3-31

COMP
DNO | DNAME | LOC EMP

ENO [ENAME | SAL| CHILDREN
CNAMIs | DOB

001 ENG | BLDG3 111 SMITH | 12000 JANE MAY
DAVE | APRIL

121 JONES | 12500 BOB OCT

SUE JAN

Figure 3.17. Result from STORE command

could be used:

STORE COMP (DNO, DNAME, LOC, EMP(ENO, ENAME, SAL, CHILDREN(CNAME, DOB)))
VALUES <001, ENG, BLDG3, (<111, SMITH, 12000, (<JANE, MAY>
<DAVE, APRIL>) >
<121, JONES, 12500, (<BOB, OCT>
<SUE, JAN>) >) >;

The result from adding the new tuple to the COMP relation can be seen in Figure 3.17. Notice
that within the single COMP tuple there are 2 tuples stored in the EMP nested relation an 2 tuples

stored in the CHILDREN nested relation for each EMP tuple.

The MODIFY command is used to change tuples that already exist in a database. This
is accomplished by setting a new value for the tuples and qualifying the change with au optional
WHERE clause. For example, to insert a child name for employee number 121 in the CIILD

rclation, we stored earlier with employee numbers, we could use the following command.

MODIFY CHILD
SET CNAME = “SUE”
WIERE ENO = 121;

If we wish to give all the employees in the Employee relation a 10% raise, the WITERE clause can

be left out and the following command could be used:

MODIFY Employee
SET SAL = SALx1.1

3-32

When dealing with nested relations the syntax becomes a little more complicated for the path to
the sub-relation being modified needs to be identified as well as the modification. This is done by
nesting DML commands in the SET clause of the MODIFY command. For example, to add a new
child to employee Smith in the COMP database of Figure 3.17 the following command could be |

used:

MODIFY COMP
SET EMP = (MODIFY EMP
SET CHILDREN = STORE CIILDREN

VALUES <BILL, AUG>)
WHERE ENO = 111)
WHERE DNO = 001;

The ERASE command is used to erase tuples from a relation, qualifying the target tuple by an
optional WHERE clause. For example, to erase the tuple we modified carlier in the CHILD relation

the following command could be used:

ERASE CHILD
WHERE ENO = 121;

Consider the relations in Figure 3.186, if the user wishes to remove all tuples in the Employee relation

which don’t have a child in the CHILD relation, the following command could be used:

PRASE Employee
WHERE NOT EXISTS (CHILD WHERE Employee.ENO = CIIILD.ENO);

If a tuple that is in a nested relation is to be erased the MODIFY command musl be used in
conjunction with the ERASE command. For example, if the user wishes to erase the tuple in the

CHILDREN nested relation of COMP we added earlier the following command could be uscd.

MODIFY COMP
SET EMP = (MODIFY EMP
SET CHILDREN = (ERASE CIILDREN
WHERE CNAME = “BILL”)
WHERE ENO = 111)
WHERE DNO = 001;

3-33

IV. Design & Implementation

4.1 Introduclion

In this chapter we discuss the design process for the SQL/NF translator and the methodology
used to implement it. The basic process for translating an SQL/NF query statement to a Colby
algebra tree is as shown in Figure 4.1. In addition we discuss the design and implementation process
for the symbol table which is part of the EXODUS catalog manager. First, we describe the Lexical
Analyzer and Parser process used for both query translation and symbol table creation. Next, we
describe the Data Dictionary design and implementation, followed by a description of the SQL/NF
query tree generating process, and last we discuss the generation of the Colby algebra tree from the

SQL/NF query tree. We will also present some sample SQL/NF queries with their Colby algebra

equivalents.
YACC
Paiser
SQL/NF Lexical TOKENS SQL/NF
) R
QUERY Analyzer TREE
Processes
SQL/NF
Query
Tree
Y
Colby Colby
TREE .
Processes Algebra
Tree
Figure 4.1. Query Tree Process
4.2 Parser

In Section 2.5.1 we identified the UNIX tools of YACC and LEX as our method for imple-

menting the parser component of the EXODUS architechture. The parser process is acconiplished

4-1

(ddl statement) ::= (schema) | (scheme)
(schema) ::= CREATE {(table definition) | (view definition)}

Figure 4.2. SQL/NF sample BNF

in two steps. In the first step, the query is scanned by the lexical analyzer (LEX) which assigns
a “token” to the key words and other components of the query statement and returns a stream of
these tokens. The second step is accomplished by YACC, which receives the stteam of tokens and
organizes them according to the input structure rules, when one of these rules is recognized the C

code in the action part of the rule is invoked.

4.2.1 The LEX process. To implement the LEX process was a straight forward task of
creating the file scanner.l which contains all the definitions for the key words and other components
(punctuation, integers, identifiers, etc.) in the LEX format described in Appendix A. The key words
are taken from the SQL/NF BNT found in Appendix C. The program yylez is generated using the

LEX compiler with the file scanner.l.

4.2.2 The YACC process. Implementation of the YACC process was accomplished by first
creating the file parser.y which contains the translation of the SQL/NF BNF, found in Appendix C,
into the YACC format described in Appendix A. This was also a relatively straight forward process,
though time consurnming, for the BNF format is almost identicle to the YACC format. For exaiuple,
the BNTF in Figure 4.2 is translated into the YACC format shown in Figure 4.3. The key word
tokens returned from yylezr are identified as “T_key-word”. The C code that is exccuted, when a
grammar rule is recognized, is enclosed by { and }. The program yyparse is generated using the

YACC compiler with the file parser.y.

In order to verify that the parser was correctly identifying the SQL/NT grammar rules (syu-
tax), only print statements were enclosed in the executable section of each rule (sce Figurc 4.3).

These print statements identified what syntax rules were satisfied for the input query. When testing

4-2

ddl_statement

schema
{
printf("\nFound DDL STATEMENT");
}
| scheme
{
printf("\nFound DDL STATEMENT");
}
H
schema
T_CREATE table_definition
{
printf("\nFound CREATE TABLE definition");
}
| T_CREATE view_definition
{
printf("\nFound CREATE VIEW definition");
}

Figure 4.3. YACC format for SQL/NT sample BNF

thi version of the patser, conflicts arose from ambiguities in the definitions in the original BNF in
(13). In particular, some of the definitions dealing with nested query expressions and table names
created problems. Therefore the BNF was modified to accommodate YACC and eliminate any
ambiguities. Once this phase was complete we began adding the C code, to the executable section

of the rules, to implement the symbol table, Sql query tree, and Colby algebra Lree processcs.

4.2.8 Parser Inpui. The first version of the parser was created with the man procedure
calling yyparse which read input directly from standard input and required the user to input all
key words in upper case letters. This also limited the structure of the input query statemeut to a
single continuous line of text entered from the keyboard. To correct the first problewm, the maw
procedure was modified so that it would convert the input query to all capital letters and sture thic
new version in the file query.file. Then the main procedure defines standard input to be the file

queryfile before calling yyparse . lowever, the modified main procedure would not work when

Table
name
col_spec
item.list
scheme.name

ITEM
name
attr
numb
nest
next

Figure 4.4. The Table and ITEM data structures

standard input was from the keyboard. This problem along with the above second problem was
corrected by creating a separate procedure SQLNF which reads formatted lines of text entered from
the keyboard until a ¢ ; ’ is encountered and stores it in the file input_file. Then the procedure

calls the main procedure redirecting standard input to be from the file input_file.

4.8 Calalog Manager

In Section 2.5.2 we identified the composition of the Data Dictionary used by the Catalog
Manager to be identical to the one developed by Mankus(10). Thercfore, our main task here was
1o develop the interim data structures and associated processes for the parser to execute for the
CREATE TABLE, CREATE TYPE , and CREATE VIEW DDL statements. The interim data
structures are used to hold the information provided in the DDL statements until it can be entered

into the Data Dictionary.

The basic construct of a relation table definition consists of the table-name and a list of
attribute items or a table-name and a scheme-name. Therefore, the interim data structures we
used are called “Table” and “ITEM” and are shown in Figure 4.4. The Table structure holds (le
name of the table being defined, an identifier as to whether the table consists of an I'TEM_LIST

or a SCIIEME name, a pointer to an ITEM structure which is the beginning of the item-list if the

4-4

CREATE TABLE COMP
(DNO INT 1,
DNAME CHAR 32,
LOC CHAR 24,
(TABLE EMP
(ENG INT1,
ENAME CHAR 32,
SAL FLOAT 4,
(TABLE CHILDREN
(CNAME CHAR 24,
DOB CHAR 7)))));

Figure 4.5. Sample CREATE TABLE command

table consists of one, and the name of the scheme if the table is defined by a scheme name. The
ITEM structure holds the attribute name, the domain of the attribute (TABLE, CIIAR, INT, or
FLOAT), the size of the attribute, a pointer to a Table structure when the attribute is a relation
valued attribute, and a pointer to the next ITEM. For example, consider the CREATE TABLE
command in Figure 4.5 uscd to create the relation COMP from Figure 3.15. The resultant Table-

ITEM tree structure generated by parsing this command is shown in Figure 4.6.

The Data Dictionary developed by Mankus(10) consists of two persistant collections which
are tables, a table of relations and a symbol table. The table of relations is a list of the table names,
defined by the CREATE TABLE command, and an index value to identify the type (scheme) of
the relation (see Figure 4.7). The symbol table contains the information on the schiemes and thei
associated attributes, which can be defined by either the CREATE TABLE or CREATE TYPL
commands. When the CREATE TYPE command is used there is no entry in the table of relations.
When the CREATE TABLE command is used in conjunction with a non-schemie name definition,

a scheme is created with the same name as the table name. An important feature we included in

our Data Diclionaty prowss, is when o table or suhicie Is defined the nauie st be uniyue or it

will be rejected.

Some additional commands have been added to the grammar rules in parser.y in order tu

provide a formatted output of the table of relations and the symbol table. The first command is
“DUMP”, this simply performs a formatted dump of all the information in the relation and symbol
tables similar to Figure 4.7 and Figure 4.8. The second command is “CHECK TABLE table-name”,
this performs a formatted dump of the symbol table only for the table identified by table-name. If
the table-name is left out a dump of the relation table is performed (Figure 4.7). The symbol table
dump in Figure 4.8 was created by the command “CHECK TABLE COMP”. The last command
is “CIIECK TYPE scheme-name”, this performs a formatted dump of the syinbol table only for

the scheme identified by scheme-name.

The CREATE TABLE tree in Figure 4.6 is used to generate an entry in the Table of Relavons
and the Symbol Table entries as seen in Figure 4.7 and Figure 4.8 respectively. Twe Rel Type
Index in Figure 4.7 identifies the relation COMP to have a schume COMP defined by INDEX 42 in
Figure 4.8. The relation valued attribute EMP is identified to have a scheme EMPs with INDE?
value 52 by the NEST INDEX, the parent relation COMP identified by the PARENT .ndea va e
42, and 4 attributes identified by the NUMB value. The SCIHEME EMPs was automatically created
on-the-fly to provide a scheme type name for the EMP relation valued attribute, which was defined

on-the-fly by the CREATE TABLE command in Figure 4.5.

An example of a table definition using schemes can be seen in Figure 4.9 for the EMPLOYEE

relation found in Figure 3.15. The relation was created using the following set of comunands.

CREATE TYPETOY
(NAME CHAR 32,
COLOR CIIAR 32);

CREATE TYPE CIILD
(NAME CHAR 32,
AGE INT 1)
TABLE TOYS TOY;

CREATE TYPE PROJECT
(NAME CITAR 32,
NUMBER INT 2);

TABLE

comP

TABLE

ITEM.LIST

EMP

ITEM.LIST

TABLE

NULL

ITEM

INT

NULL
|

|

ITEM
DNAMI
CHIAR

32
NULL

| TAB
TABLE
NJA

NULL

DNO . ~

faw & ———

NULL {

ITEM

INT

NULL

ITEM
ENAME
CHAR

a0

1 NULL

ITEM
SAL
FLOAT

-—
4

NULL

%
|

ITEM

TAB
TABLE |
M/A

e, e s

{

NULJ

ENO [+

—

———— e

Figure 4.6, CREATE TABLE Tree

2

CHILDREN

ITEM.LIST

NULL

ITEM

3

CNAME
CIIAR
24
NULL
]

|

ITEM
DOB
CHAR

7
NULL
NULL

Table 0f Relations

ok dok ook kokok kol ok
Rel Index Rel Name Rel Type Index
0 EMP 10
1 DEPT 16
2 COMPANIES 20
3 VIEWD 44
4 CcOMP 42
5 EMPLOYEE 10

Figure 4.7. Sample Relation Table

Dump of Symbol Table for TABLE: COMP
Aokl ok kokok ok kKo Sk Kk ok Rk ok Kok

INDEX NAME LEVEL DOMAIN NUMB PARENT NEST INDEX
42 COoMP SCHEME ON_THE_FLY 4 -1 -2
50 DNAME ATTR CHAR 32 42 -2
43 DNO ATTR INT i 42 -2
51 Loc ATTR CHAR 24 42 -2
79 EMP ATTR PREV_DEFINED 4 42 52
52 EMPs SCHEME ON_THE_FLY 4 -1 -2
54 ENO ATTR INT i 52 -2
55 ENAME ATTR CHAR 32 52 -2
56 SAL ATTR FLOAT 4 52 -2
78 CHILDREN ATTR PREV_DEFINED 2 52 75
75 CHILDRENs SCHEME ON_THE_FLY 2 -1 -2
76 CNAME ATTR CHAR 24 75 -2
77 DOB ATTR CHAR 7 75 -2

Figure 4.8. COMP Symbol Table

4-8

bump of Symbol Table for TABLE: EMPLOYEE
ok ko Aokkok ok Rk ok ok KKk KK

INDEX NAME LEVEL DOMAIN NUMB PARENT NEST INDEX
10 EMPLOYEE SCHEME ON_THE_FLY 5 -1 -2
11 NAME AITR CHAR 32 10 -2
12 AGE ATTR INT 1 10 -2
13 DNO ATTR INT 2 10 -2
14 CHILDREN ATTR PREV_DEFINED 3 10 3
3 CHILD SCHEME ON_THE_FLY 3 -1 -2
4 NAME ATTR CHAR 32 3 -2
5 AGE ATTR INT 1 3 -2
6 TOYS ATTR PREV_DEFINED 2 3 0
0 TOY SCHEME ON_THE_FLY 2 -1 -2
1 NAME ATTR CHAR 32 0 -2
2 COLOR ATTR CHAR 32 0 -2
15 PROJECTS ATTR PREV_DEFINED 2 10 7
7 PROJECT SCHEME ON_THE_FLY 2 -1 -2
8 NAME ATTR CHAR 32 7 -2
9 NUMBER ATTR INT 2 7 -2

Figure 4.9. Sample Symbol Table with nested Schemes

CREATE TABLE EMPLOYEE
(NAME CHAR 32,
AGE INT1,
DNO INT2,
(TABLE CHILDREN CHILD),
(TABLE PROJECTS PROJECT));

The CHILDREN, TOYS, and PROJECTS relation valued atiributes were previously defined as
schemes (CHILD, TOY, PROJECT) identified by the NEST INDEX values (3, 0, 7), and these

scheme names were used to define the relation valued attributes in the CREATE TADBLE command.

The DML stalements DROP TABLE and DROP TYPE are implemented by using the
table-name or scheme-name to search the relation table and symbol table and remove the table
and scheme along with the attributes (children) of the scheme. If a table exists in the relation
table that is of the scheme type to be dropped, an error condition is raised and thc sclicine is not

deleted. This is also true if a relation valued attribute is defined to have the scheme Lype to be

4-9

SQL.QUERY
type
function
select.list
from.list
where_list
new.name

Figure 4.10. The SQL-QUERY node structure

dropped. For example, an attempt to drop tk+ CH(LD scheme in the EMPLOYLE symbol table

would generate an error condition because it is utilized by the EMPLOYEE scheme.

4.4 SQL/NF Query Tree

The basic construct of an SQL/NY' query statement is the three clauses SELECT, FROM
(which contain elements separated by commas) and WHERE (which contain elements scparated
by AND or OR). Therefore, the data structures we used for the SQL/NF query tree consist of
an SQL_QUERY node, SELECT_NODE, FROM_NODE, and WHERE_NODE to represent each
element of their associated clause. These nodes are generated by associated procedures that are
executed by the parser as the SQL/NF query statements are parsed and grammar rules are recoy-

nized.

The SQL-QUERY node (Figure 4.10) contains an identifier to indicate what type of query
expression it is (NEST, UNNEST, QUERYSPEC = SFW query expression , or FUNC.QE =
query expression with a function), the function name associated with the query expression if type
= FUNC.QE, a pointer to the first SELECT_.NODE of a select node list, a pointer to the first
FROM.NODE of a from node list, a pointer t» the first WIIERE.NODE of a where node list,
and the new column namg of an AS clause. If select_list = NULL then the query expression is
a “SELECT ALL FROM...” query. If the where_list = NULL then the query has no WIERE

clause. When type = (NEST or UNNEST) the FROUM.NODE contains the table-name and the

SELECT.NODE
type
attr
reference
nest
next

Figure 4.11. The SELECT_NODE structure

FROMNODE
type
name
nest
next

Figure 4.12. The FROM_NODE structure

SELECT_NODE contains the column-list.

The SELECT.NODE (Figure 4.11) contains an identifier to indicatz what type of element
in the SELECT clause it is (COLUMN.SPEC = attribute name, or QUERY.EXP = nested query
expression), a pointer to an ATTRDESC data structure! which holds the atiribute name if type
= COLUMNL.SPEC, the reference name (eg. ref-name.attr-name) if one is given, a pointer to an
SQL_-QUERY node if type = QUERY.EXP, and a pointer to a SELECT_.NODE which contaius

the next element of the SELECT clause.

The FROM_NODFE (Figure 4.12) contains an identifier to indicate what type of element
in the FROM clause it is (TABLE_NAME or QUERY_.EXP), the name of the table if type =
TABLE_.NAME, a pointer to an SQL_.QUERY node if type = QUERY_EXP, and a pointer to a

FROM.NODE which contains the next element of the FROM clause.
The WHERE_NODE (Figure 4.13) contains an identifier to indicate what type of element in
the WIIERE clause it is (PRED = predicate, or QUERY_EXP), a pointer to a PRED_NODLE data

stiucture! which contains the predicate information if type = PRED, a pointer to an SQL.QUERY

IThis data structure is used by the Colby algebra tree and defined in Section 4.5.

4-11

WHERE_NODE
type
pred

query
next

Figure 4.13. The WHERE_NODZE struture

node if type = QUERY_EXP, and a pointer to a WHERE_.NODE which contains the next element

of the WHERE clause.

Now to see how it is all put together, consider the following query statement:

SELECT DNO, NAME

FROM DEPT, EMP

WHERE DNAME = “MKT” AND AGE > 30
AND DEPT.DNO = EMP.DNO;

The query tree in Figure 4.14 is the result of parsing the above SQL/NT query. The empty blocks
in the ATTRDESC and PRED_NODE data structures are filled in when converting the SQL/NF
query tree to the Colby algebra tree. To see how a nested query statement in the SELECT clause

would look in an SQL/NT query tree, consider the following query statement:

SELECT (SELECT SAL

FROM EMP

WHERE ENAME = “SMITH”)
FROM COMP;

The query tree in Figure 4.15 is the result of parsing the above SQL/NT query. The nested
query in the SELECT clause is identified ir. the query tree by the “nest” element of the top level
SELECT_NODE which is of the type QUERY_EXP. The empty blocks in the ATTRDESC and
PRED_NODE data structures ar= filled in when converting the SQL/NF query tree to the Colby

algebra tree.

The BNT definitions for the structured queries (NEST and UNNEST), require an additioual
data structure be used, in conjunction with the parser, for holding the information of a “columu list”

as shown in Figure 4.16. The COL.SPEC_NODE contains a column-name, a reletcnce-nanie if oue

4-12

SQL.QUERY

SELECT.NODE

QUERY.SPEC
NULL
FROM.NODE
TABLE.NAME |+
DEPT
NULL NULL
I
L WHERE.NODE PRED.NODE
FROM.NODE »| PRED =
TABLE.NAME | — » TRUE
EMP NULL NULL
NULL L
NULL DNAME
NULL
R cHar
“MKT”
A 4
WHERE.NODE PRED.NODE
PRED >
» TRUE
NULL NULL
L
AGE
NULL
RI Nt
30
Y
WHERE.NODE PRED.NODE
PRED =
» FALSE
NULL DEPT
NULL L
DNO
EMP
R
DNC

Y

COLUMN.SPEC [ATTRDESC
» DNO
NULL
NULL
VALUE
SELECT.NODE
COLUMN.SPEC | ATTRDESC
» NAME
NULL
NULL
NULL VALUE

Figure 4.14. SQL/NT Query Tree

4-13

SQL.QUERY

SELECT.NODE

Figure 4.15. SQL/NF nested Query Tree

4-14

ROMNODE QUERY_SPEC QUERY.EXP
- RULL NULL
TABLE.NAME >
NULL
COMP -
NULL
NULL NULL
NULL NULL
SQL.QUERY
D 0 H—)
QUERY_SPEC SELECT.NODE
FROM.NODE NULL | COLUMN.SPEC| ATTRDESC
TABLE.NAME ¢ > SAL
EMP NULL
NULL
NULL —
NULL NULL VALUE
WHERE.NODE PRED.NODE
PRED =
» TRUE
NULL NULL
L
ENAME
NULL
R CHAR
“SMITH”

name
ref_name
next

Figure 4.16. The COL.SPEC_NODE structure

QUERY
OPERATOR
argument
input[LEFT] | input[RIGHT]

Pigure 4.17. The QUERY node structure

is used, and a pointer to a COL_.SPEC_NODE which is the next element in the column list. Once
the column_list structure is complete, it is translated into a select_list as part of a SQL.QUERY

node.

4.6 Colby Algebra Query Tree process

The basic structure of the Query tree was established as part of the Thesis effort by Mankus(10),
with some additions made to several of the tree components. The tree consists of a series of QUERY
nodes linked together, along with supporting data structures, to logically provide an access proce-
dure to a database with respect to the relational operators of the Colby Algebra. Each QUERY

node represents a relational operator in the Colby relational algebra.

The QUERY node (Figure 4.17) contains an identifier to indicate the operator (SELECT,
PROJECT, PRODUCT, NEST, UNNEST) for the query expression, a nested ARGUMENT struc-

ture, and a pair of pointers to additional input QUERY nodes which make up the tree structuie,

4-15

ARGUMENT
name
reltype
new.name
pred
list

Figure 4.18. The ARGUMENT structure

LIST
attr
cond

sublist
next

Figure 4.19. The LIST node structure

The input QUERY nodes identified with LEFT and RIGIIT are both required if the OPERA-
TOR = PRODUCT, because a Cartesian-product is a binary operation. Only the LEFT input
QUERY node is used for the remaining operators identified earlier. When other binary operators
(UNION, DIFFERENCE, INTERSECTION) are implemented, both input QUERY nodes will also

be required.

The ARGUMENT structure (Figure 4.18) contains information for the QUERY node operator
and consists of the relation name, the relation scheme type, the new name of the subrelation for the
NEST operator, a pointer to a PRED_.NODE which contains selection condition information, and
a pointer to a LIST node which is the first node of the attribute list. Depending on the QUERY
node operator and location in the Query tree, different elements in the structure will or will not be
used.

The LIST node (Figure 4.19) is used to maintain information of attributes to be projected or
navigated across to reach nested attributes. The node is used to construct the Sclect List, Projec!
List, Nest List, and Unnest List for the Colby Algebra operators. It consists of a pointer to an

ATTRDESC structure which contains information about the attribute, a poiuter to a PRED.NODE

4-16

ATTRDESC
name
type
size
value u_flag
data_type
rvatype
parentrel

Figure 4.20. The ATTRDESC structure

PRED_NODE
oper
constant.on_right
left | ref_name
u_flag
op-type
right | ref_name
u.flag
op.type

Figure 4.21. The PRED_NODE struciure

structure which contains condition criteria if the attribute is a relation valued attribute, a pointer
to a LIST node which identifies a nested list of attributes for the relation valued attribute of the
current LIST node, and a pointer to a LIST node which is the next item in the List for the QUERY

node.

The ATTRDESC structure (Figure 4.20) contains all the information on an attribute. It con-
sists of the name of the attribute, the domain of the attribute (CIIAR, INT, FLOAT, PREV_DEFINED),
the size of the attribute identifies the number of bytes (CHAR, INT, FLOAT) or the number of
nested attributes (PREV_DEFINED), a nested VALUE structure that is used for storing tuple
information?, the scheme-name for a relation valued attribute, and the name of the parent relition

for the attribute.

The PRED_.NODE contains the information pertaining to a selection condition or predicate

2This structure is explained further in Section 4.6.

4-17

for the associated ARGUMENT or LIST node. It consists of an identifier to indicate the operator
for the node (=,! =,<,>,<,>, NOT, AND, OR), an identifier to indicate if the right hand side
of the predicate contains a constant value (eg. “SMITII", 123), and two operand nested structures
(left and right) which correspond to the left and right side of the predicate. The operand structure
consists of the reference name for the attribute used for that side of the predicate, a flag to indicate
what type of value is used for that side of the predicate (PRED, CHAR, INT, FLOAT), and a
nested union structure which contains the actual value of the type identified by the flag. The
PRED type value is used when the operator for the piedicate is one which links two predicates at

the current level in the Query tree together such as NOT, AND, or OR.

4.5.1 SQL/NF to Coldy Algebra translation. The three clauses (SELECT, FROM, WIIERE)
of an SQL/NF query® can be translated into a Colby Algebra query using the relational operators?
(select, project, and cartesian-product) with little difficulty. The attribute-list of the SELECT
clause corresponds to the project-list of the Projection operator. The predicate-list of the WIERE
clause corresponds directly to the Con.ition of the Selection operator. The relation-list of the
FROM clause corresponds to the Relations of the Cartesian-product operator. The attribute-list
of the SQL/NF NEST clause corresponds to the Nest-list of the Colby Nest operator, and the
same for the UNNEST clause and Nest operator. When a nested SF'W-expression appears in the
SELECT clause, the relation-list of the nested FROM clause along with the attribute-list of the
nested SELECT clause provides the path and attributes for the project-list, and the relation-list
provides the path for the select-list. The nested select-list condition is obtained froin the nested

WIHERE clause.

The translation of the SQL/NF query tree in Figure 4.14 which was generated from the

following SQL/NT query statement:

3See Section 3.2.2
4See Appendix B

SELECT DNO, NAME

FROM DEPT, EMP

WHERE DNAME = “MKT” AND AGE > 30
AND DEPT.DNO = EMP.DNO;

Would produce the Colby Algebra query tree in Figure 4.22, and represents the following Colby

Algebra query:

T((DNO,NAME) o(x(¢(DEPTpNAME = “MKT*), 0(EM PAGE 5 30))DEPT.DNO = EMP.DNO))

The translation of the SQL/NF query tree in Figure 4.15 which was generated froimn the folluwing

SQL/NF query statement:

SELECT (SELECT SAL

FROM EMP

WIHERE ENAME = “SMITH”)
FROM COMP;

Would produce the Colby Algebra query tree in Figure 4.23, and represents the [ollowing Colb,
Algebra query:

W((EMP(SAL)) O’(COMP(EIWPENAME = “SA\HTII")))

The translation process has been given the additional responsibility of performing etror chieck-
ing on the input query statement. All attribute names used in the SELECT and WIHERE clauscs
are checked to verify the correct parent relation name exists within the assoc¢ia.ed FROM clause.
The verification is accomplished by checking the symbol table. When the attribute in the SQL/NF
query tree is matched to a relation name then the attribute is added to the Colby query tice aloug
with the information required for the AT TRDESC. Once all the relation names of the FROM
clause have been used for attribute testing, a final check is made to see if all attributes have been

translated to the Colby query tree, if not, an error condition is set.

4-19

ARGUMENT

QUERY empty
PROJECT empty
argument NULL
, |NULL NULL pist ~ ATTRDESC
> | pno
NULL INT
NULL 1
| VALUE
ARGUMENT N/A
QUERY y empty DEPT
PRODUCT empty PRED.NODE
argument NULL
= . ATTRDESC
A\ "I FaLSE =] NAME
NULL DEPT CHAR
NULL
L | INT NULL 32
DNO NULL VALUE
EMP N/A
RY Nt EMP
DNO
ARGUMENT ARGUMENT
QUERY / DEPT QUERY / EMP_
SELECT DEPT SELECT EMP
avgument NULL argument NULL
NULL | NULI NULL{ NULL —
NULL NULL
PRED.NODE PRED.NOD™
= < >
TRUE TRUE
NULL NULL
L | CHAR L| Nt
DNAME AGE
NULL NULL
R} cHAR Rl
“MKT” 30 |

Figure 4.22. Sample Colby Query Tree

4-20

3
ARGUMENT
QUERY empty ;
PROJECT empty]
q
argument NULL ATTRDESC E
,|NuLL NULL LIST EMP ;
> * PREVDEF :
NULL p
e VALUE
ARGUMENT u EMPs E
QUERY y COMP COMP ‘
SELECT COMP
argument NULL ATTRDESC k
NULL| NULL NULL LIST SAL
| > | FLOAT
1 NULL . :
; NULL ;
ATTRDESC oL VALUE
LIST :
PREL.NODE R EMP N/A
n) PREVDEF] NP
- ;
TRUE
NULL VALUE
NULL
NULL
L | cHAR EMPs
SAME COMP
NULL
R1 cHAR
‘SMITH”
Figure 4 23. Nested SFW-expression in Query Tree
4-2]

name
type
index
numb
parent_name
parent_index
next

Figure 4.24, The NEST.TABLE.NODE structure

et

4.5.2 NEST and UNNEST Process. The NEST and UNNEST clauses present a problem

when trying to match attributes and their parent relation by checking the synibol table. This is duc

)

to the nature of the commands to restructure the relation. The solution to this problem biought

"

about the requirement for a temporary symbol table to contain the new relation valued attribules

5 e Wty o

and the nested attributes new parent information, E

The NEST_TABLE.NODE structure (Figure 4.24) is used to provide this temporary symbol
table. It consists of the name of the attribute, what operator type (NEST or UNNEST) has
changed the parent of the atiribute, the symbol table INDEX value for the attribute, the symbol
table NUMB value for the attribute, the new parent name for the attribute, the new parent INDEX
value from the symbol table, and a pointer to the next NEST_TABLE_NODE in the temporary
symbol table. When the atiribute is a relation valued attribute created by the NEST clausc the

“numb” value is ithe number of attributes in the ON clause.

When a NEST or UNNEST clause is encountered in the SQL/NT query the temporary symbol
table is created. Tle error checking process takes place during the creabion of the tempotiry syimbol
table. Now when an attribute is not found in the permanent symbol table, the temporary symbol

table is checked and the ATTRDESC information is provided if the attribute is found.

Let us consider the following query using the NEST clause on the COMP relation of Figure 1.25.

4-22

COMP
I I I I I |

Figure 4.25. COMP relation table

SELECT DNO, (SELECT ENO
FROM EMP)
FROM (NEST ENO, SAL, ENAME
ON COMP AS EMP);

The Colby query tree generated by the above SQL/NT query is shown in Figure 4.26 and translates

to the following Colby Algebra query:

#((DNO, EM P(ENO)) ¥(COM P(ENO,SAL, ENAME) — EM P))

The UNNEST clause is translated into a query tree almost identical to the NEST operator

query tree, with the exception being no new_name is assigned in the ARGUMENT.

4.6 Exlcnsions to the Colby Query Tree

In order to provide for non-relational algebra database operations Lo be passed on to the
Query Optimizer and subsequent stages in the EXODUS architecture (see Figure 2.5), several
additional values for the OPERATOR element of the QUERY node were defined. These extensions

reflect the operations of the DDL and DML statements.

When creating ~r dropping a relation table via a CREATE TABLE or DROP TABLE com-
mand, the EXODUS storage manager must be informed of the operation to allocate or deallocate
tlie relation table. The basic structure of the Colby query tree for these opcrations is a single
QUERY node with the name of the relation in the ARGUMENT and an OPERATOR value of

CREATE_REL for CREATE TABLE or DROP.REL for DROP TABLE .

4-23

ARCUMENT
QUERY empty
PROJECT empty
argument NULL ATTRDESC
_ InuLL NULL LIST DNO
/ > > INT
NULL 1
NULL VALUE
. ; |
ARGUMENT ATTRDESC VA
QUERY COMP LIST ENO P
NEST COMP » INT
argament EMP NULL 2 ATTRDESC
NULL) /
NULL| NULL NULL — LST oy
! /A "| PREVDEI
NULL
COMP 3
VALUE
NULL
ATTRDESC EMPs
LIST ~ SAL comp
™ FLOAT
NULL - ANTTRDESC
) S LIST ENO
red
RULL VALUE L, . -
i NA INT
NULL "
COMP
NULL VALUE
NULL N7a
ATTRDESC EMP
LIST ENAME
| CHAR
NULL 2
NULL VALUE
NULL N7
COMP

Figure 4.26. NES'Y' operator Query Tree

4-24

o {1 L

s

EMP

ENO | ENAME | CHILDREN
CNAME] DOB

I I I | |

Figure 4.27. The EMP relation table

A major extension that was developed but not implemented at this time, concerns the DML
commands of STORE, MODIFY, and ERASE. This requirement led to the modification of the
ATTRDESC structure (Figure 4.20) to include a way to store tuple information to be appliel to
the database. The modification as the addition of the “value” nested structure which is similar
to the operand structure used in the PRED.NODE (Figure 4.21, The value structure consists of a
flag to indicate what type of value is used for that attribute {CIIAR, INT, FLOAT), and a nested
unton structure which contains the actual value of the type identified by the flag. For example, if

we add a tuple to the EMP relation in Figure 4.27 using the STORE command witl: the following

SQL/NF command:

STORE EMP (ENO, ENAME, CHILDREN(CNAME, DOB))
VALUES <123, SMITII, (<STEVE, MAY>) >;

The Colby query tree structuce generated by the above STORE command can be seen in Figure 4.28.
Multiple tuples for the nested relation(s) (eg. CHILDREN) are identified in the query tree by adding
an additional list node (via next) with the ATTRDESC reflecting the same relation valued attribute
name (CIHIILDREN) and another sublist with the tuple data. When translating the SQL/NF query
trees for the MODIFY and ERASE commands, the Colby query trees are constructed in a similar

mailiner.

47 Testing and Validation

Upon completion of implementing the Data Dictionary process several relations were created

and deleted (INT relations, and Nested relations with and without scheme definitions), to test all

4-25

A el T s

ARGUMENT

QUERY 1__EMP
STORE VAL EMP
argument NULL ATTRDESC
NULL| NULL NULL LIST ENO
> > INT
NULL 2 INT
NULL VALUE 123
ATTRDESC | NULL
LIST CNAME TP
] " CHAR
NULL 24 CHAR
NULL VALUE STEVE LIST ATTRDESC
NULL . ENAME
: CHAR
CHILDREN NULL - —
NULL VALUE SMITII
NULL
{ ATTRDESC EMP
LIST DOB
> CIHIAR
NULL 7 CHAR
TULL VALUE MAY Y ATTRDESC
NULL NULL LIST CHILDREN
CHILDREN > PREVDEF
NULL)
VALUE
NULL, CHILDRENs
EMP

Figure 4.28. STORE_.VALUE QUERY Tree

the combinations of the DDL statements that were implemented in the parser, some of the results

were used in Section 4.3.

After implementing the translator, several queries were input to the parser. The Colby query
trec was built for all combinations of the SQL/NF SFW-expressions that were implemented in the
parser. These included SFW queries on top level attributes as well as nested attributes, queries on
multiple relations, and queries utilizing the NEST and UNNEST operators. In order to verify the
QUERY tree structure a set of print procedures were developed to provide a formatted outpul of

the Colby query tree. Some sample test cases and their results are provided in Appendix D.

4.7.1 Translator limitations. Testing the capabilities of the translator was limited to a sub-

set of the Query facilities and DDL statements defined in Appendix C.

The Query facilities implemented only include <query spec>, <structured query>, and

<nested query expression>. The <structured query> capabilities are limited to NEST and UNNEST.

The <query spec> capabilities do not include the PRESERVE clause and <predicate> is limited

to <comparison predicate>.

The DDL statements implemented include <schema>, <scheme>, and <drop statement>.

These statements are limited by not including any capabilities dealing with constraints.

4-27

§lio

Ry TRR A ey W 17

b et b e B e L

[0

PPERTIPEH FU T ERAR T IR A/

g

V. Conclusion

5.1 Summary

This thesis effort aczomplished several objectives, resulting in-the design-and-implementation
of an SQL/NF to Colby Algebra query translator as part of the Triton system-using the EXODUS

tool kit. The main objectives included developing:

—

. A parser to recognize SQL/NT statements and execute associated:processes.
2. A persistent data dictionary and the associated processes to create and-maintain-it.
3. A query tree structure in the form of the SQL/NF query expressions.

4. A translation process to convert the SQL/NF query tree:into-the-equivalent Colby-relational

algebra query tree.

5. A process to walk down the Colby query tree and:display-the-contents-at-each node.

The parser was implemented using the UNIX tools. of LEX and"YACC. The key words in the
BNF for SQL/NF were defined in the lexical analyzer created by ILEX and the BNF definitions
were translated into the appropriate grammar definitions for YACC. Print-statements-were added
to each grammar rule to show the parsing process for recognizing-the:components of the SQL/NF

statements.

The composition of the Data Dictionary we used was developed-as=part-of-the-thesis work by
Mankus(10). This design took advantage of the persistence feature:o-FEXODUS-which allowed the
data dictionary to remain in the storage manager between program executions. The-data structures
and associated processes required to interpret and implement-the SQL/NF-DDL statements for use
with the data dictionary were developed. These processes are calied by ihe parser as the DDL

statement is recognized.

5-1

A query tree structure was developed to represent the structure of-the-SQL/NF query state-
ment. Each query node consisted of three main elements which reflect the-select, from, and where
clanses of the SQL/NF query statement. The processes were developed.-to-build the query tree as
the parser recognized the components of each of the statement clauses. The design included provid-
ing for nested queries within any one of the clauses. Only a subset of-the SQL/NF query statements

were implemented, mainly the ones that can be directly translated-into-the Colby relational algebra.

The SQL/NF to Colby Algebra translation process was developed using the SQL/NT query
tree as input and producing the equivalent relational algebra-query -tree as.output. The query
nodes and the tree structure resemble a general structure required_by the query optimizer stage in
-the EXODUS architecture. The query tree structure for translating DML-statemnents-was designed
but not implemented. One of the main tasks of the translator process-is-to_check-the-components
of the SQL/NF query tree for legal queries by matching relations-and:their-attributes identified in
‘the query statement. This matching process is accomplished via procedures-developed-for-checking

the contents of the data dictionary.

As part of the testing process to verify the composition-of-the=Colby query -tree a.group of
print procedures were developed to walk down the tree and-output-each-of-the-elements of the data
structures for each query node. These print procedures-were-developed so-as:to correspond directly

with each of the data structures associated with the QUERY node.

5.2 Fulure Recommendalions

‘Enhancements to the current system would begin-with-continuing.the-implementation of the
DML commands as to enable manipulation of the data-in-the database. This-could be followed
by implementing the set operations (UNION, INTERSECTION, DIFFERENCE) between query
expressions. The next major enhancement to the system would-be to:extend the relational algebra to

be able to handle query expressions with functions and the predicates of the WIIERE clauses “search

5-2

condition” not-implemented in the current system. Finally, enhancements to the Data Dictionary
would include the -addition of table constraint definitions and column constraint specifications.
Serious thought should be given to changing the symbol table into a version which utilizes the

I'TEM-and Table data structures (Figure 4.4) and is also persistent.

5-3

Appendix A. YACC and LEX formats

Al YACC

The general format for a YACC specification is:

{declarations}

%%

{rules}

%%

{programs}
where one.or more sections can be omitted except the first %%. The rules section contains lines of
the type:

name: body;
where:the colon and semicolon are YACC punctuation, name is a nonterminal symbol and body.is
a-sequence of zero or more names and literals (A literal consists of characters enclosed in single
quotes.) Nonterminal 'names’ are declared in the declaration section as:

%token namel name?2 ...

Grammar rules which have the same left hand side can be rewritten using the vertical bar
“I" instead of rewriting the left hand side, for example:
name: surname;
name: firstname surname;
name: firstname middlename surname;
can-be-given to-YACC in the format identified in Figure A.1 where surname, firstname and mad-
dlename-are literals. The statements enclosed by { and } are the actions that are executed-once

‘the-associated rule is satisfied. In each case a different variation of the build_name() procedure is

called for each rule.

name: surname

¢ build_name(NULL, NULL, stringl);
I Iirstname surname
¢ build_name(stringi, NULL, string2);
| iirstname middlenams surname
I build_name(stringi, string2, string3);

Figure A.1. Example YACC rule
A2 LEX

Like YACC, the general format for a LEX program is:
{definitions}

%%

{rules}

%%

{user defined subroutines}

where the definitions and user defined subroutines are optional.

Each regular expression represents the user’s control-decision. It is written in the form of
a table, with the regular expressions on the left and LEX actions to the right. The normal C
escapes, like \t, and \n, are recognized and the back-slash:can be used to escape LEX operators
For example, if the user wants to recognize key words of the SQL/NT query language, the following

LEX rules would be appropriate:

A-2

AT e

ook i adi i

L)

R R R P IR T LU N TV TR

Bl £ AN S, e,

g e

“SELECT” return(T_SELECT);
“FROM” return(T.FROM);

“WHERE” return(T-WHERE);

The actions taken are the return of a “token” value for each key word.

Appendix B. Colby Algebra Definitions

B.1 Query Formals

1. Selection operator: o(Relationgondition(Select List))

2. Projection operator: w((Froject List) Relation)

3. Nest operator: v(Relation (Nest list) — New Subrelation)
4. Unnest operator: p(Relation(Unnest list))

5. Cartesian-product opcrator: Xx{Relation1(JoinPath), Relation?)

5. Join operator: ba (Relationl(Join Path), Relation2)
7. Union operator: UY(REL1, REL2)
8. Differcnce operator: —¢(REL1,REL2)
9. Intersection operator: N*(REL1, REL2)

B.2 Selection (o).

Let R be a relation scheme.

Then, L is a ‘select list’ of R if:

1. L is empty.

2. L is of the form (R, L1, Rac, Lo, ..oy RueaLn) (1 € n < | RAUP(R) |) where each R; is a

relation-valued attribute of R, ¢; is a condition on R;, and L; 1s a seiect list of /2,.

Let r be-a relation with relation scheme R.

B-1

l

1. o(re) = {te€r)ce(t) = true}

2. o(re(Rac, I, Racy L2, ..o Rue, L)) =
{tidery
(t{Altr(R) — {Ry, Ray ..., Ru}] = t[Alr(R) - {Ry, Ra,..., Ru}))
Ae(ir) = true)

AR = o((tr[Ra]),, 11) # 0)

ANURA) = o((tr[Ra]), In) # 0)}

where I = (Rye,L1,Rac;Lo2,. .., Ruc,Ln) is a select list of ' ssibly

empty) select lists-of R;’s and c-is a condition on R.

B.8 Projection (x).

Let R be a relation scheme.

Then, L is a ‘project list’ of R-if:

1. L is empty.

2. Lisof the form (Ry Ly, RaLa, ..., RyLyn) where each R; is an attribute of R and L, is a project

list of R; (L; is empty-if R; is an atomic-attribute).
Let r be a relation with relation-scheme R.

1. w(r) = r.

2. w((R1Ly, RoLa, ..., RyLy)r)
(1@ e AUR) = fe, BAD)) Ao ACR = f(tr, RaLa)))

where f(4, , L) = L [Ri)if R; € FAlr(R)

= n(Li(t.[R)) if R: € RAtr(R)

where (RyLy, RpLs, ..., RyLy) is a project list of R.

B-2

O e sl i

B RS A e R

"

b e A

U2 SR E 2

KA i I 2057,

B.f Nest (v).
‘Let R be a relation scheme.
Then, I is a ‘nest list’ of R if:
1. L.is of the form (Ry, ..., Ry) where each R; € Altr(R).

2. L is of the form (R;L;) where R; € RAtt»(R) and L; is a nest list of I2;.

‘Let r be-a relation with relation scheme R and let A be a new attribute name such that A 3 Attr(R).

L v(r(Ry,...,Ra)— A) = {t|3, €r|
(t[Attr(R) = {Ry, ..., Ru}] = L[AlUr(R) = {Ry,..., R\})DA
@t[A] = {slRy,..., Rn]|s-€7]

(s[Attr(R) = {Ry,...,Ry}] = te[Altr(R) = {Ry,..., Ra}D])}

2. v(r(R;L;) = A) = {t|3,.€r|
(At (R) = {R;}) = t.[Attr(R) ~ {R:)])
AR = vt [RiiLi — A))}

B.5 Unnest ().

Let R be a relation scheme.

Then, L is an ‘unnest list’ of R if:

1. L is of the form (R;) where R; € RAttr(R).

2. L is of the form (R;L;) where R; € RAttr(R) and L; is an unnest list of R,.

B-3

Let r be a relation with relation scheme R.

Lop(r(R) = {t]|3t. €]
(t[Attr(R) = {R:}] = t.[Atr(R) - {1:}])
A(tAttr(R;)] € te[Ri))}

2. p(r(RiL;)) = {t|3t €r]
(tAtr(R) - {R:]}] = tr[Atir(R) - {R:})

AR = p(ts[Ri]Li))}

B.6 Join Path,
Let R be a relation scheme.
L is a “join path” of R.if:
1. L is empty.

2. L is of the form (R;L;) where R; is a relation- valued attribute of R (R, € RAUr(R)) and [,

is a join path of R;.

B-4

e el s

R W LR

S AT S ek VSN IR £

RS AN e a AR L

B.7 Cartesian-Product (x).

Let r and q be two relations with relation schemes R and Q respectively.

L x(rq) = {t]3t, er, A, €q]|
(tAitr(R)] = &) A (HAU(Q)) = 1)}
2. X(r(Rili),q) = {t|3t, €7
(R:] = x(t[R)Li, q)
NtAtr(R) — {R:}} = t[Attr(R) - {R:}])}

where (R;L;) is a join path of R.

We assume that common attributes in R and Q are renamed in order to resolve ambiguity.

B.8 Join (ba).

Let r and q be two relations with relation schemes R and Q respectively and let L be a join

path of R.

Loa(r,g) = {t|3tr€r3,€q]
(R, Ra] = to[Riy..., R) = tg[Ry,..., Ra))
AHAUr(R) = {Ry, ..., Rn)] = t[Attr(R) = {Ry,..., Ry}))
AAUP(Q) = {Ry,..., Rn)) = t:[Atr(Q) = {Ry,..., Ru}))
where {Ry,..., Ry} are the common attributes of R and Q.
2. 0a(r(RiLs),q) = {t|3t- €7
(tR) =va (t-[Ri)Li, q) # 0)

AUAUA(R) - {Ri}] = L {AUr(R) - {:}])}

B-5

e

SAd Yyt g Sa b vk

R

B.9 Ezxtended Binary Operalors.

The following applies to all the binary operators:

1. Let rl1 and r2 be two relations with relation scheme R.

2. Let k(R) = key(R) U FAttr(R) and let m(R) = RAttr(R) - k(R), where key(R) is the set of

attributes which determine the key for R.

B.9.1 Union (U,U°).

1 U(ry,m) = {tl(tem)V(ter)).

2. Us(r1,m2) = {t]((2 € r1) A(VEz € ra, Lafk(R)) # tK(R))))
V(L € ro) A (Y € 1, [k(R)] # t[E(R)]))
V(3 €r, At €re |
(tE(R)) = tlk(R)] = ta[k(R)])

A(H[R] = Ue(ta[Ra), t2Ra)))

AQR[R] = V(L [Ri), t2[R1))))}

where R; e m(R) (1<iL).

B.9.2 Difference (—,~¢).

L —(ry,m) = {t|(tern)Vv(tar2)}.
2. =¢(ry,m2) = {L|((t € r1) A (VL2 € ro, t2[k(R)] # L[E(R)]))
V(Btl €ry,dts € ‘:'2,|
(R(R)] = t[k(R)] = ta2[k(R)]) A (L1 # £2)

/\(t[Rl] = —e(tl[RI]:I’Z[RlD)

AR = —c(t[R)), t[R))}

B-6

e m st o L o e

where R; € m(R) (1 <i<k)
3.9.8 Interseclion (N,N°).

1. ﬂ(‘l‘l,rg) = {t I (t € 1‘1) A (t € 1‘2)}.
2. n°(1'1,1'2) = {t | (Stl €r, Ay €Ery I
(R(R)] = 4[k(R)] = t2[k(R))

AQ[R) = ne(ti[Ri), t2[R1)))

AR = ne(ti[RY), t2[R))))}

where R; € m(R) (1 £i <)

B-7

Appendix C. SQL/NF BNF

The following is a modified BNF definition of the Query Facilities, Data Manipulation Lan-
guage (DML), and Data Definition Language (DDL) for SQL/NT. The original version is found in
(13), which used RDL (1) as the baseline definition. A TERMINAL symbol (key word) is identified
as a word consisting of all capital letters. Non-dirtinguished symbols are enclosed with “()". The
structure “[]” indicates an optional entry and the structure “ ..” indicates an additional zero or
more repetitions of the pr rious entry. Braces are used for grouping in the BNF. Except where

modified by braces, sequencing has precedence over disjunction (indicated by).

C.I' Quesy facilities

o (query expression) ::= (query spec) | (structured query) | (function) ({query expression))

| (nested query expression) | (query- expression) (set operator) {query expression)

e (structured query) ::= NEST (nested query expression) ON (column list) [AS {column name)]"
| UNNEST {nested query expression) ON (column list)

| ORDER (nested query expression) BY (sort spec) - - -
e (sort spec) ::= {{unsigned integer) | (column name)} [ASC | DESC]
e {query spec) ::= (select from spec) [WHERE (search condition) [PRESERVE (table list})]]
- (select from spec) ::= SELECT (select list) FROM (table list) | {table name)
e (select list) ::= ALL | (select spec list)
o (select spec list) ::= (select spec) [{,(select spec)} - -]
o (select spec) ::= (column expression) | (reference name).ALL

-» {column expression) ::= {value expression) [AS (column name)]

o (table list)-::= (table spec) [{, (table spec)}- -]

o (table spec) ::= (nested query expression) [AS (column name})

e (search condition) ::= (boolean term) | (search condition) OR (boolean term)
e (boolean term) ::= (boolean factor) | (boolean term) AND (boolean factor)
o (boolean factor) ::= [NOT] (boolean primary)

¢ (boolean primary) ::= (predicate} | ({search condition})

o (predicate) ::= (comparison predicate) | (between predicate) | (in predicate) | (like predicate)

| {exists predicate) | (null predicate)
o (comparison predicate) ::= (value expression) (comp op) (value expression)

e {compop) u==|<|>|<=]|>=]!=| [NOT) ELEMENT OF | [NOT] CONTAINS

| INOT] SUBSET OF

o (between predicate) ::= (value expression) [NOT] BETWEEN (value expression) AND

(value expression)
e (in predicate) ::= (value expression tuple list) IN (nested query expression)

o (value expression tuple list) ::= (value expression)

| < (value expression) [{, (value expression)} -- >
o (like predicate) ::= (not further defined)
e (exists predicate) ::= EXISTS (nested query expression)
e (null predicate) ::= (column spec) IS [NOT) NULL
e (nested query expression) ::= (table name) | ({query expression))
e {column list) ::= [ALL BUT] (column spec) [{, (column spec)}-- -]
e (function) ::= MAX | MIN | AVG | SUM | COUNT | DISTINCT | SUBSUME

e (set operator) ::= UNION | DIFFERENCE | INTERSECT

|
Wt 02l 4 b

o B

RN

e (value expression) ::= (term) | (value expression) {+ |-} (term)
e (term) ::= (factor) | (term) {* | /} (factor)
e (factor) ::= [+ | -] (primary)

e (primary) ::= ({query expression)) | (value spec) | {column spec) | ({value expression))

| (function) ({query expression})
e (value spec) = (literaly | NULL | ({tuple literal))
e (literal) ::= (character string literal) | (numeric literal) | (tuple literal) | (don’t care literal)
e (tuple literal) ::= < (value spec}) [{, (value spec}} -] >

o (column spec) ::= [{(reference name).} - - J(column name)

C.2 DML
o (dml statement) ::= (store statement) | (modify statement) | (erase statement)

o (store statement) ::= STORE (table name) [({attribute list))] {VALUES (tuple literal)
| {table name) | (query spec) | (structured query) | (function) ({query expression})

| {query expression) (set operator) {query expression) }
o (attribute list) ::= (column name spec) [{,{colun.n name spec)} - -
e (column name spec) ::= column name | column name ({ attribute list))

o (modify statement)::= MODIFY (table name) [AS (reference name)] SET (set clause)- -

[WIERE (search condition)]

e (set clause) ::= (column name) = {(value expression) | ({dml statement})}

...... .

e (crase statement) ..= ERASE (tabie name) [AS (reference nac)J[WIIERE (scarcdi condition)]

C-3

G.8 DDI
o {ddl statement) ::= (schema) | (scheme) | (drop statement)
e (schema) ::=-CREATE {(table definition) | (view definition)}
e (table definition) ::= TABLE (table name) {{tabl: element) | (scheme name)}
o (table element) ::= ({column specification list)) | CONSTRAINTS (table constraint definition)
e {column specification list) ::= {column specification) [{, (column specification)}:]
¢ (column specification) ::= (column definition) | ({table definition))

e (column definition) ::= (column name) (data type) [(column constraint spec)- -]

[(default-clause)]
e (data type) ::= (character string type) | (numeric type)

-o (column constraint spec) ::= (not null clause) | (unigne clause) | (references clause)

| {check clause)
¢ (not null clause) ::= NOT NULL
¢ (unique clause) ::= UNIQUE
o (references clause) ::= REFERENCES (column spec) [{update rule)][{delete rule)]
e (check clause} ::= CHECK (search condition)
‘o (default clause) ::= DEFAULT (literal)

o (table constraint definition) ::= {unique constraint-definition) | (referential constraint definition)

| (check-constraint definition)
e (unique constraint definition) ::= UNIQUE (column list)

o (referential constraint definition) ::= REFERENCES (column list) WITII (column list)

[(update rule)]{{delete rule)]

C-4

o (check constraint definition) ::= {check clause) [{defer clause}))
o (update rule) ::= (action) MODIFY

¢ (delete rule) ::= (action) ERASE

o (action) ::= CASCADE | NULLIFY | RESTRICT

o (defer clause) ::= IMMEDIATE | DEFFERED

e {view definition) ::= VIEW (table name) AS (query expression)
e (scheme) ::= CREATE TYPE (scheme definition)

e (scheme definition) ::= (scheme name) (table element)

o- (drop statement) ::= DROP TABLE (table name) | DROP TYPE (scheme name)

| DROP VIEW (table name)

Appendix D. SQL/NF test cases

D.1 Dala Dictionary
1. QUERY STATEMENT FOLLOWS:

CHECK TABLE;

Table 0Of Relations

sk ok kokokok ok kR ok ok ok
Rel Index Rel Name Rel Type Index
0 NEWEMP 10
1 DEPT 16
2 COMPANY 33
3 VIEWD 44
4 EMP 10
5 COMPANIES 20
6 SHORT_EMP 49
7 REL1 50
8 DOMP_V 48
9 NEV 71
10 DEPT_N 75

D-1

. QUERY STATEMENT FOLLOWS:

CHECK TABLE NEWEMP;

Dump of Symbol Table for TABLE: NEWEMP

2ok s ok e e ok o o s o ok ok ok ok sk ofe ok ok o o ek o ok ok ok

INDEX NAME LEVEL DOMAIN

10 EMP SCHEME ON_THE_FLY
11 NAME ATTR CHAR

12 AGE ATTR INT

13 DNO ATTR INT

14 CHILDREN ATTIR PREV_DEFINED
3 CHILD SCHEME ON_THE_FLY

4 NAME ATTR CHAR

5 AGE ATTR INT

6 TOYS ATTR PREV_DEFINED
0 TOY SCHEME ON_THE_FLY

i NAME ATTR CHAR

2 COLOR ATTR CHAR

15 PROJECTS ATTR PREV_DEFINED
7 PROJECT SCHEME ON_THE_FLY

8 NAME ATTR CHAR

9 NUMBER ATTR INT

. QUERY STATEMENT FOLLOWS:

CHECK TABLE EMP;

Dump of Symbol Table for TABLE: EMP
Aok ok koo okl ok sk Kok sk ok ksl ok sk ok ok

INDEX NAME LEVEL DOMAIN

84 EMP2 SCHEME ON_THE_FLY
85 ENO ATTR INT

86 ENAME ATTR CHAR

87 DNO ATTR INT

ge SAL ATTR FLOAT

D-2

NUMB PARENT
5 -1
32 10
1 10
10
3 10
3 -1
32 3
i 3
2 3
2 -1
32 0
32 0
2 10
2 -1
32
2 7

NUMB PARENT

NEST INDEX

NEST INDEX

4 -1
1 84
32 84
1 84
4 g4

-2
-2
-2
-2
-2

LI e

D.2 SFW-expressions
1. QUERY STATEMENT FOLLOWS:

SELECT ENO,DNAME
FROM DEPT,EMP
WHERE ENAME = "“SMITH";

QUERY node follows:

Query node Operator is: PROJECT
Arg name =

Arg reltype =

ARG list follows:
Attrdesc name = DNAME
Attrdesc type = CHAR
Attrdesc size = 32
Attrdesc parentrel = DEPT
Next list follows:
Attrdesc name = ENO
Attrdesc type = INT
Attrdesc size = 1
Attrdesc parentrel = EMP
Left input node follows:

i

QUERY node follows:

Query node Operator is: CARTESIAN PRODUCT
Arg name =

Arg reltype =

Left input node follows:

QUERY rode follows:

Query node Operator is: SELECT
Arg name = DEPT

Arg reltype = DEPARTMENT

Right input node follows:

QUERY node follows:

Query node Operator is: SELECT
Axrg name = EMP

Arg reltype = EMP2

Arg pred follows:

Pred oper is =

Pred comrstant_on._right = TRUE
LEFT pred operand follows:
Op_type is CHAR: ENAME

RIGHT pred operand follows:
Op_type is CHAR: "SMITH"

D-3

T T R

|3

. QUERY STATEMENT FOLLOWS:

SELECT ENAME
FROM (SELECT ALL
FROM EMP,DEPT
VHERE DNO < ENO)
WHERE DNAME = "SHIPPING";

QUERY node follows:

Query node Operator is: PROJECT
Arg name =

Arg reltype =

ARG list follows:

Attrdesc name = ENAME
Attrdesc type = CHAR
Attrdesc size = 32

Attrdesc parentrel = EMP
Left input node Zollows:

QUERY node follows:

Quexry node Operator is: CARTESIAN PRODUCT
Arg name =

Arg reltype =

Left input node follows:

i
3%
g
:

QUERY node follows:

Query node Operator is: SELECT
Arg name = EMP

Arg reltype = EMP2

Arg pred follows:

Pred oper is <

Pred constant_on_right = FALSE
LEFT pred operand follows: i
Op_type is CHAR: DNOC
RIGHT pred operand follows: :
Op_type is CHAR: ENO :
Right input node follows: H

UL SR, e e st

ot oy b e M L 1

QUERY node follows:

Quexy node Operator is: SELECT
Arg name = DEPT

Arg reltype = DEPARTMENT

Arg pred follows:

Pred oper is =

Pred constant_on_right = TRUE
LEFT pred operand follows:
Op_type is CHAR: DNAME

RIGHT pr perand follows:
Op_type is TAK: "SHIPPING"

D-4

3. QUERY STATEMENT FOLLOWS:

SELECT ALL

FROM DEPT,NEWEMP,COMPANY
WHERE DEPT.DNO = NEWEMP.DNO
AND DEPT.LCC = COMPANY.LOC
AND AGE>35;

QUERY node follows:

Query node Operator is: CARTESIAN PRODUCT
Arg name =

Arg reltype =

Arg pred follows:

Pred oper is AND

Pred constant_on_right = FALSE
LEFT pred operand follows:
Op_type is PRED:

Pred oper is =

Pred constant_on_right = FALSE
LEFT pred operand follows:
Op_type is CHAR: DNO

With reference name DEPT
RIGHT pred operand follows:
Op_type is CHAR: DNO

With reference name NEWEMP
RIGHT pred operand follows:
Op.type is PRED:

Pred oper is =

Pred constant_on_right = FALSE
LEFT pred operand follows:
Op_type is CHAR: LOC

With reference name DEPT

RIGHT pred operand follows:
Op_type is CHAR: LOC

With reference name COMPANY
Left input node follows:

QUERY node follows:

Query node Operator is: SELECT
Arg name = DEPT

Arg reltype = DEPARTMENT

Right input node follows:

QUERY node follows:

Quexry node Operator is: CARTESIAN PRODUCT
Arg name =

Arg reltype =

Left input node follows:

QUERY node follows:

D-5

4.

Query node Operator is: SELECT
Arg name = NEWEMP

Arg reltype = EMP

Arg pred follows:

Pred oper is >

Pred constant_on_right = TRUE
LEFT pred operand follows:
Op_type is CHAR: AGE

RIGHT pred operand follows:
Op.type is INT: 35

Right input node follows:

QUERY node follows:
Query node Operator is: SELECT
Arg name = COMPANY
Arg reltype = COMP

QUERY STATEMENT FOLLOWS:

SELECT DNAME, (SELECT ENAME
FROM EMP
WHERE SAL>10000)
FROM COMPANY
WHERE LOC = "CHICAGO";

QUERY node follows:

Query node Operator is: PROJECT
Arg name =

Axrg reltype =

ARG list follows:

Attrdesc name = DNAME
Attrdesc type = CHAR
Attrdesc size = 20

Attrdesc parentrel = COMPANY
Next list follows:

Attrdesc name = EMP

Attrdesc type = PREV_DEFINED
Attrdesc rvatype = EMPs
Attrdesc size = 4

Attrdesc parentrel = COMPANY
Sublist follows:

Attrdesc name = ENAME
Attrdesc type = CHAR
Attrdesc size = 24

Attrdesc parentrel = EMP
Left input node follows:

QUERY node follows:
Query node Operator is: SELECT
Arg name = COMPANY

D-6

Arg reltype = COMP

Arg pred follows:

Pred oper is =

Pred constant_on_right = TRUE
LEFT pred operand follows:
Op_type is CHAR: LOC

RIGHT pred operand follows:
Op_type is CHAR: "CHICAGO"
ARG list follows:

Attrdesc name = EMP

Attrdesc type = PREV_DEFINED
Attrdesc rvatype = EMPs
Attrdesc size = 4

Attrdesc parentrel = CCMPANY
List cond follows:

Pred oper is >

Pred constant_on_right = TRUE
LEFT pred operand follows:
Op.type is CHAR: SAL

RIGHT pred operand follows:
Op.type is INT: 10000

. QUERY STATEMENT FOLLOWS:

SELECT DNAME,DNO, (SELECT ENAME,ENO, (SELECT CNAME
FROM CHILDREN)

FROM EMP

WHERE SAL >1000)

FROM COMPANY

WHERE LOC = "CHICAGO" AND DNO = 456;

QUERY node follows:

Query node Operator is: PROJECT

Arg name =

Arg reltype =

ARG list follows:

Attrdesc name = DNAME
‘Attrdesc type = CHAR
Attrdesc size = 20

Attrdesc parentrel = COMPANY
Next list follows:

Attrdesc name = DNO

Attrdesc type = INT

~

Attrdesc size = 2
Attrdesc parentrel = COMPANY
Next list follows:

Attrdesc name = EMP

Attrdesc type = PREV_DEFINED
Attrdesc rvatype = EMPs

o st ot bt e B F B e

Attrdesc size = 4

Attrdesc parentrel = COMPANY
Sublist follows:

Attrdesc name = ENAME
Attrdesc type = CHAR
Attrdesc size = 24

Attrdesc parentrel = EMP
Yext list follows:

Attrdesc name = ENO
Attrdesc type = INT
Attrdesc size = 2

Attrdesc parentrel = EMP
Next list follows:

Attrdesc name = CHILDREN
Attrdesc type = PREV_DEFINED
Attrdesc rvatype = CHILDRENs
Attrdesc size = 2

Attrdesc parentrel = EMP
Sublist follows:

Attrdesc name = CNAME
Attrdesc type = CHAR
Attrdesc size = 12

Attrdesc parentrel = CHILDREN
Left input node follows:

QUERY node follows:

Query node Operator is: SELECT
Arg name = COMPANY

Arg reltype = COMP

Arg pred follows:

Pred oper is AND

Pred constant_on_right = FALSE
LEFT pred operand follows:
Op_type is PRED:

Pred oper is =

Pred constant_on_right = TRUE

LEFT pred operand follows:
Op_type is CHAR: LOC

RIGHT pred operand follows:
Op_type is CHAR: "CHICAGO"
RIGHT pred operand follows:
Op_type is PRED:

Pred oper is =

Pred constant_on_xright = TRUE
LEFT pred operand follows:
Op_type is CHAR: DNO

RIGHT pred operand follows:
Op.type is INT: 456

ARG list follows:

Attrdesc name = EMP

Attrdesc type = PREV_DEFINED

D-8

Attrdesc rvatype = EMPs
Attrdesc size = 4

Attrdesc parentrel = COMPANY
List cond follows:

Pred oper is >

Pred constant_on_right = TRUE
LEFT pred operand follows:
Op_type is CHAR: SAL

RIGHT pred operand follows:
Op_type is INT: 1000

. QUERY STATEMENT FOLLOWS:

SELECT NAME,DNAME, (SELECT NAME
FROM CHILDREN
WHERE AGE>5)

FROM DEPT,NEWEMP

WHERE DEPT.DNO = NEWEMP.DNO

AND LOC = "DAYTON";

QUERY node follows:

Query node Operator is: PROJECT
Arg name =

Arg reltype =

ARG list follows:

Attrdesc name = DNAME
Attrdesc type = CHAR
Attrdesc size = 32

Attrdesc parentrel = DEPT
Next list follows:

Attrdesc name = NAME
Attrdesc type = CHAR
Attrdesc size = 32

Attrdesc parentrel = NEWEMP
Next list follows:

Attrdesc name = CHILDREN
Attrdesc type = PREV_DEFINED
Attrdesc rvatype = CHILD
Attrdesc size = 3

Attrdesc parentrel = NEWEMP
Sublist follows:

Attrdesc name = NAME
Attrdesc type = CHAR

Adedoand A mEma = 9
ALVVIGESC 853128 = O

Attrdesc parentrel = CHILDREN
Left input node follows:

QUERY node follows:
Query node Operator is: CARTESIAN PRODUCT

D-9

Arg name =

Arg reltype =

Arg pred follows:

Pred oper is =

Pred constant_on_right = FALSE
LEFT pred operand follows:
Op_type is CHAR: DNO

With reference name DEPT
RIGHT pred operand follows:
Op.type is CHAR: DNO

With reference name NEWEMP
Left input node follows:
QUERY node follows:

Query node Operator is: SELECT
Arg name = DEPT

Axrg reltype = DEPARTMENT

Arg pred follows:

Pred oper is =

Pred constant_on_right = TRUE
LEFT pred operand follows:
Op_type is CHAR: LOC

RIGHT pred operand follows:
Op_type is CHAR: "DAYTON"
Right input node follows:

QUERY node follows:

Query node Operator is: SELECT
Arg name = NEWEMP

Arg reltype = EMP

ARG list follows:

Attrdesc name = CHILDREN
Attrdesc type = PREV_DEFINED
Attrdesc rvatype = CHILD
Attrdesc size = 3

Attrdesc parentrel = NEWEMP
List cond follows:

Pred oper is >

Pred constant_on_right = TRUE
LEFT pred operand follows:
Op_type is CHAR: AGE

RIGHT pred operand follows:
Op.type is INT: &

D-10

NEST and UNNEST
. QUERY STATEMENT FOLLOWS:

SELECT (SELECT ALL
FROM DEPT
WHERE DNAME = "SMITH"), EMP
FROM (NEST DEPT_N
ON DNAME AS DEPT)
WHERE DNO = 123;

QUERY node follows:

Query node Operator is: PROJECT
Arg name =

Arg reltype =

ARG list follows:

Attrdesc name = DEPT
Attrdesc type = NEST
Attrdesc rvatype =

Attrdesc size = 1

Attrdesc parentrel = DEPT_N
Next list follows:

Attrdesc name = EMP

Attrdesc type = PREV_DEFINED
Attrdesc rvatype = EMPs
Attrdesc size = §

Attrdesc parentrel = DEPT_N
Left input node follows:

QUERY node follows:

Query node Operator is: SELECT
Arg name =

Arg reltype =

Arg pred follows:

Pred oper is =

Pred constant_on_right = TRUE
LEFT pred operand follows:
Op_type is CHAR: DNO

RIGHT pred operand follows:
Op_type is INT: 123

ARG list follows:

Attrdesc name = DEPT

Attrdesc type = NEST
Attrdesc rvatype =

Attrdesc size = 1

Attrdesc parentrel = DEPT_N
List cond follows:

Pred oper is =

Pred constant_.on_right = TRUE
LEFT pred operand follows:

Op_type is CHAR: DNAME
RIGHT pred operand follows:
Op_type is CHAR: "SMITH"
Left input node follows:

QUERY node follows:

Query node Operator is: NEST
Arg name = DEPT_N

Arg reltype =

ARG list follows:

Attrdesc name = DNAME
Attrdesc type = CHAR
Attrdesc size = 20

Attrdesc parentrel = DEPT_N
ARG nest name = DEPT

. QUERY STATEMENT FOLLOWS:

SELECT DNO, (SELECT ENAME, (SELECT CNAME
FROM CHILDREN)
FRCM (NEST EMP
ON CNAME,C_DOB AS CHILDREN)
WHERE SAL > 1500)
FROM DEPT_N;

QUERY node follows:

Query node Operator is: PROJECT
Arg name =

Arg reltype =

ARG list follows:

Attrdesc name = DNO

Attrdesc type = INT
Attrdesc size = 1

Attrdesc parentrel = DEPT_N
Next list follows:

Attrdesc name = EMP

Attrdesc type = PREV_DEFINED

Attrdesc rvatype = EMPs

Attrdesc size = §

Attrdesc parentrel = DEPT_N
Sublist follows:

Attrdesc name = ENAME
Attrdesc type = CHAR
Attrdesc size = 24

Attrdesc parentrel = EMP
Next list follows:

Attrdesc name = CHILDREN
Attrdesc type = NEST

nn

-Attrdesc rvatype =

Attrdesc size = 2

D-12

Attrdesc parentrel = EMP
Sublist follows:

Attrdesc name = CNAME
Attrdesc type = CHAR
Attrdesc size = 12

Attrdesc parentrel = CHILDREN
Left input node follows:

QUERY node follows:

Query node Operator is: NEST
Arg name =

Arg reltype =

ARG list follows:

Attrdesc name = EMP

Attrdesc type = PREV_DEFINED
Attrdesc rvatype = EMPs
Attrdesc size = 6

Attrdesc parentrel = DEPT_N
Sublist follows:

Attrdesc name = CNAME
Attrdesc type = CHAR
Attrdesc size = 12

Attrdesc parentrel = EMP
Next list follows:
Attrdesc name = C_DOB
Attrdesc type = INT
Attrdesc size = 2
Attrdes parentrel = EMP
ARG nest name = CHILDREN
Left input node follows:

QUERY node follows:

Query node Operator is: SELECT
Arg name = DEPT_N

Arg reltype = DEPT_N

ARG list follows:

Attrdesc name = EMP

Attrdesc type = PREV_DEFINED
Attrdesc rvatype = EMPs
Attrdesc size = b

Attrdesc parentrel = DEPT_N
List cond follows:

Pred oper is >

Pred constant_on_right = TRUE
LEFT pred operand follows:
Op.type is CHAR: SAL

RIGHT pred operand follows:
Op_type is INT: 1500

3. QUERY STATEMENT FOLLOWS:

D-13

UNNEST NEWEMP ON CHILDREN,PROJECTS;

QUERY node follows:

Query node Operator is: UNNEST
Arg name = NEWEMP

Arg reltype = EMP

ARG list follows:

Attrdesc name = CHILDREN
Attrdesc type = PREV_DEFINED
Attrdesc rvatype = CHILD
Attrdesc size = 3

Attrdesc parentrel = NEWEMP
Next list follows:

Attrdesc name = PROJECTS
Attrdesc type = PREV_DEFINED
Attrdesc rvatype = PROJECT
Attrdesc size = 2

Attrdesc parentrel = NEWEMP

. QUERY STATEMENT FOLLOWS:

SELECT ENO,ENAME,DNAME
FROM (UNNEST COMPANY
ON EMP);

QUERY node follows:

Query node Operator is: PROJECT
Arg name =

Arg reltype =

ARG list follows:

Attrdesc name = DNAME

Attrdesc typs = CHAR

Attrdesc size = 20

Attrdesc parentrel = COMPANY
Next list follows:

Attrdesc name = ENO

Attrdesc type = INT
Attrdesc size = 2
Attrdesc parentrel = EMP
Next list follows:
Attrdesc name = ENAME
Attrdesc type = CHAR
Attrdesc size = 24
Attrdesc parentrel = EMP
Left input node follows:

QUERY node follows:
Query node Operator is: UNNEST

D-14

Arg name = COMPANY

Arg reltype = COMP

ARG list follows:

Attrdesc name = EMP

Attrdesc type = PREV_DEFINED
Attrdesc rvatype = EMPs
Attrdesc size = 4

Attrdesc parentrel = COMPANY

. QUERY STATEMENT FOLLOWS:

SELECT ENO,ENAME,DNAME

FROM (UNNEST COMPANY
ON EMP)

WHERE SAL > 1500;

QUERY node 1ollows:

Query node Operator is: PROJECT
Arg name =

Arg reltype =

ARG list follows:

Attrdesc name = DNAME
Attrdesc type = CHAR
Attrdesc size = 20

Attrdesc parentrel = COMPANY
Next list follows:

Attrdesc name = ENO

Attrdesc type = INT
Attrdesc size = 2

Attrdesc parentrel = EMP
Next list follows:

Attrdesc name = ENAME
Attrdesc type = CHAB
Attrdesc size = 24

Attrdesc parentrel = EMP
Left input node follows:

n o

QUERY node follows:

Query noda Operator is: SELECT
Arg name =

Arg reltype =

Axg pred follows:

Pred oper is >

Pred constant on_right = TRUZ
‘LEFT pred oparand follows:
Op_type is CHEAR: SAL

RIGHT pred operand follows:
:Op.type is INT: 1500

Left input node follows:

D-15

QUERY node follows:

Query node Operator is: UNNEST
Arg nams = COMPANY

Arg reltype = COMP

ARG list follows:

Attrdesc name = EMP

Attrdesc type = PREV_DEFINED
Attrdesc rvatype = EMPs
Attrdesc size = 4

Attrdesc parentrel = COMPANY

. QUERY STATFMZINT FOLLOWS:

SELECT NEWEMP.NAME,CHILDKEN.NAME
FROM (UNNEST NEWEMP
ON CHILDREN);

QUERY node follows:

Query node QOperator is: PROJECT
Arg name =

Axrg reltype =

ARG list follows:

Attrdesc name = NAME
Attrdesc type = CHAR
Attrdesc size = 32

Attrdesc parentrel = NEWEMP
Next list follows:

Attrdesc name = NAME
Attrdesc type = CHAR
Attrdesc size = 32

Attrdesc parentrel = CHILDREN
Left input node follows:

fnonu

QUERY node follows:

Query node Operator is: UANEST
Arg name = NEWEMP

Arg reltype = EMP

ARG list follows:

Attrdesc name = CHILDREN
Attrdesc type = PREV_DEFINED
Attrdesc rvatype = CHILD
Attrdesc size = 3

Attrdesc parentrol = NEWEMP

D-16

o

10.

1L

12,

Bibliography

. American National Standards Commitee on Computer and Information Processing. “Rela-

tional Database language (X3H2-84-2).” Draft Proposed, January)984.

. Carey, Michael J. and others. “The EXODUS Extensible DBMS Project: An Overview.” In

Zdonik, Stanley B. and David Maicr, editors, Readings in Objecled-Orienled Datubase Systems,
San Mateo, California: Morgan Kaufman Publishers, Inc, 1990.

. Codd, E.FF “A Relational Model for Large Shared Data Banks,” Communications ACM,

6(13):377-387 (June 1970).

. Colby, Latha S. A Recursive Algebra for Nested Relations. Computer Sciences Technical

Report 259, Indiana University, January 1989.

. Deshpande, V. and P.A. Larson. An Algebra for Nested Relations. Technical Report CS-87-65,

University of Waterloo, 1987.

Herjee, K.B. and R. Sadeghi. “Rapid implementation of SQL: a case study using YACC and
LEX,” Information and Software Technology, 80:228-236 (May 1988).

. Jaeshke, G. and H.J. Schek. “Remarks on the Algebra on Non-TFirst Normal Form Relations.”

In Proc. 1si PODS, pages 124-138, 1982,

. Kirkpatrick, James E. “The Natural Join of Nested Relations.” Unpublished technical reporl.

Air Force Institute of Technology (AU), Wright-Patterson AFB OII, February 1989.

. Makinouchi, A. “A Consideration of Normal Form of Not-Necessarily-Normalized Relations

in the Relational Data Model.” In Proceedings of 3rd. VLD, pages 447-453, 1977,

Mankus, Michael A, Design and Implemeniaiion of the Nesled Relational Daia Model under
the EXODUS Extensible Database System. MS thesis, AFIT/GCS/ENG/89D-11, School of
Engineering, Air Force Institute of Technology (AU), Wright-Patterson AF3 Oll, December
1989.

Ramakrishnan, Srinivasan. Design and Implementalion of a Translalor for SQL/NF wuth Rolc
Joins. MS thesis, University of Texas at Austin, Austin Texas, December 1986.

Richardson, J. and others;. The Design of the E programming Language. ‘Technical Report,
University of Wisconsin-Madison, February 1989,

. Reth, Mark A. and others. “SQL/NF: A Query Language for ~1INTI Relational Databases,”

Information Systems, 12(1):99~114 (January 1987).

. Schek, H.J. and M.H. Scholl. “The Relational Model with Relation-Valued Attributes,” Infor-

mation Systems, 11(2):137-147 (1986).

. Stonebraker, Michael and others. “Extending a Database System with Procedures,” ACM

Tragnsactions on Dalabase Syslems, 12(3):350-376 (September 1987).

. Stroustrup, Bjarne. The C+-+ Programming Language. Reading, Massachusetts. Addison-

Wesley Publishing Company, 1986.

. Thomas, S.J. and P.C. Fischer. “Nested Relational Structures.” In Kauellakis, P.C., editor,

Advances in Compuling Research III, The theory of Dalabases, pages 269-307, JAI Press,
1986.

BIB-1

Form Approved

. REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporuine burden 1cr this collection of information s estmated to averaqe 1 hout per respomse inciuding the time 107 reviewing instructions, searching existing data sources,
qathenng ang maintuning the data neeged and compieting ana reviewing the coliection of infarmation Send comments regarding this burden estimate or any other aspect ot this
coltection ot in1ormation inciuding suggestions 1or 1eguUUING this buraen to Washington Heacquarters Services, Directorate for information Operations ond Reports, 1215 seflerson

- Dawis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budger, Paperwork Reduction Project (0704.0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1890 Mastex’'s Thesls
4, TITLE AND SUBTITLE 5. FUNDING NUMBERS

SQL/NF Translator for the TRITON Nested Relational
Database System)

6. AUTHOR(S)
Craig W. Schnepf, Capt, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ‘ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/GCE/ENG/90D-05 .

~f

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10, SPONSORING / MONITORING
AGENCY REPORT NUMBER

7 367 treafaor < A
- P e e Y) v e

=> _—-4-123. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

=t o mA e cas o

”AtAépfégéd'for pﬁblic relaease; distribution unlimited

-13. ABSTRACT (Maximum 200 words)

The problem addressed in this thesis effort concerns the design and
implementation of a high level data base query language translator based on the
nested relational data model. The objective of the model is to increase the
; performance of the relational model by modelirg real-world cbjects in the problem
domain intuv nested relations. The translator is designed within the EXODUS
extensible architectural framework for building application-specific database
systems. The SGL/NF query language used for the nested relatiomal model is an
extension of the popular relational model query language SQL. The query language
is translated into a nested relational algebra (Colby algebra) in the form of a
query tree structure. A large amount of theory exists for the nested relational
model, however, very little information on the implementation of a high level
query language for the model is available. This thesis effort provided the front
end to a proto-type nested relational data bzse management system (Triton) using
the EXODUS tool kit.

SV N mm WP NER W fvnem—— - -

W p——— b o n

14. SUBJECT TERMS 15. NUMBER OF PAGES
121
Nested Relational Database Mowel, SQL/NF, EXODUS, TRITON, TR
Colby Algebra, LEX, YACC PR
“17. SECURITY CLASSIFICATION] 18 SECURITY CLASS'FICATION] 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPGAT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-03-280-5503 - Stanoare Form 296 (Rev 2-89)

Prespmee B &S S J
R

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcin i is i

2P0 r _ | g and cataloging reports. It is important
that this information be consistent with the rest of the report, particularlg tge gover and titleppage.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave Blank) Block 12a. Distribution/Avaijlablity Statement.

Denote public availability or limitation. Cite

Block 2. Repor Date, Full publication date any availability to the public. Enter additional
including day, month, and year, if available (e.g. limitations or special markings in all capitals
1 Jan 88). Must cite at least the year. (e.g. NOFORN, REL, ITAR)
glock 35 Type of Report and Qaf];gsl Covered.

tate whether report is interim, final, etc. If e
applicable, enter%nclusive report dates (e.g. 10 DOD - See DoDD 5230.24, "Distribution
Jun 87 - 30 Jun 88). Statements on Technical

Documents.”
Block 4. Title and Subtitle. A title is taken from DOE - See authorities
the part of the report that provides the most NASA - See Handbook NHB 2200.2.
meaningful and complete information. When a NTIS - Leave blank.
report is prepared in more than one volume,
repeat the primary title, add volume number, L
and include subtitle for the specific volume. On Block 12b. Distribution Code.
classified documents enter the title
classification in parentheses. DOD - DOD - Leave blank
) . DOE - DOE - Enter DOE distribution categories
Block 5. Funding Numbers, To include contract from the Standard Distribution for
and grant numbers; may include program Unclassified Scientific and Technical
element number(s), project number(sh task Reports
numbgar(s?, and work unit number(s). Use the NASA - NASA - Leave blank
following labels: NTIS - NTIS - Leave blank.
C - Contract PR - Project
G - Grant TA - Task . .
PE - Program WU - Work Unit Block 13. Abstract, Include a brief (Maximum
Element Accession No. 200 words) factual summary of the most

significant information contained in the report.
Block 6. Author(s), Name(s) of person(s) ‘

responsible for writing the report, performing Block 14. Subject Terms, Keywords or phrases
the researCh', or Cred'teq with the content Of the ident'fying major subjects in the report.

report. If editor or compiler, this should follow

the name(s). Block 15. Number of Pages, Enter the total
Block 7. Performi oAt number of pages.

Address(es). Self-explanatory. Block 16. Price Code, Enter appropriate price
Block 8. Performing Qrganization Report code (NTIS only).

Number, Enter the unique alphanumeric report

number(s) assigned by the organization Blocks 17.-19. i ificati
performing the report. Self-explanatory. Enter U.S. Security

Classification in accordance with U.S. Security

Block 9. Sponsoring/Monitoring Agency Regulations (i.e., UNCLASSIFIED). If form
Names(s) and Address(es). Self-explanatory. contains classified information, stamp

Block 10 in classification on the top and bottom of the page.

Report Number. (If known)
Block 20. Limitation of Abstract, This block

glfgfrggtgdn not included elsewhertEa r;tféh as: must be completed to assign a limitation to the

Prepared in cooperation with...; Trans. of ..., To abstract. Enter either UL (unlimited) or SAR

be published in When a repbrt is revised, (same as rgport). An entry in this plo_ck is

include a statement whether the new report necessary if the abstract is to be limited. If

supersedes or supplements the older report. blank, the abstract is assumed to be unlimited.
Standard Form 298 Back (Rev

